阶乘尾数零的个数

100!的尾数有多少个零?

*问题分析与算法设计
  可以设想:先求出100!的值,然后数一下末尾有多少个零。事实上,与上题一样,由于计算机所能表示的整数范围有限,这是不可能的。
   为了解决这个问题,必须首先从数学上分析在100!结果值的末尾产生零的条件。不难看出:一个整数若含有一个因子5,则必然会在求100!时产生一个零。因此问题转化为求1到100这100个整数中包含了多少个因子5。若整数N能被25整除,则N包含2个因子5;若整数N能被5整除,则N包含1个因子5。

 1 //程序说明与注释
 2 #include<stdio.h>
 3 int main()
 4 {
 5     int a,count =0;
 6     for(a=5;a<=100;a+=5) //循环从5开始,以5的倍数为步长,考察整数
 7     {
 8         ++count; //若为5的倍数,计数器加1
 9         if(!(a%25)) ++count; //若为25的倍数,计数器再加1
10     }
11     printf("The number of 0 in the end of 100! is: %d. ",count); //打印结果
12     return 0; 
13 }    

*运行结果
The number of 0 in the end of 100! is: 24.

*问题进一步讨论

本题的求解程序是正确的,但是存在明显的缺点。程序中判断整数N包含多少个因子5的方法是与程序中的100有关的,若题目中的100改为1000,则就要修改程序中求因子5的数目的算法了。

*思考题

修改程序中求因子5的数目的算法,使程序可以求出任意N!的末尾有多少个零。

posted on 2014-07-14 17:18  华山青竹  阅读(946)  评论(0编辑  收藏  举报

导航