滑蒻稽的博客

P5514 [MtOI2019]永夜的报应

看了题解才知道这个性质:
a ⊕ b ≤ a + b a \oplus b \le a+b aba+b
粗略证明:

0 + 0 = 0 , 0 ⊕ 0 = 0 1 + 0 = 1 , 1 ⊕ 0 = 1 0 + 1 = 1 , 0 ⊕ 1 = 1 1 + 1 = 2 , 1 ⊕ 1 = 0 0+0=0,0\oplus 0=0\\ 1+0=1,1\oplus 0=1\\ 0+1=1,0\oplus 1=1\\ 1+1=2,1\oplus 1=0 0+0=0,00=01+0=1,10=10+1=1,01=11+1=2,11=0
可以得到: a ⊕ b ≤ a + b a \oplus b \le a+b aba+b

回到题目,设分成了2组,得到结果为c,d,原数为 a 1 , a 2 , a 3 , a 4 a_1,a_2,a_3,a_4 a1,a2,a3,a4,则 c + d = ( a 1 ⊕ a 2 ) + ( a 3 ⊕ a 4 ) ≥ a 1 ⊕ a 2 ⊕ a 3 ⊕ a 4 c + d =(a_1 \oplus a_2)+(a_3 \oplus a_4)\ge a_1 \oplus a_2 \oplus a_3 \oplus a_4 c+d=(a1a2)+(a3a4)a1a2a3a4

代码:

#include <bits/stdc++.h>

using namespace std;
int n,ans,p;

int main()
{
	cin>>n;
	cin>>ans;
	for(int i=2;i<=n;i++)
	{
		cin>>p;
		ans=ans^p;
	}
	cout<<ans;
	
	return 0;
} 
posted @ 2021-01-31 22:03  huaruoji  阅读(60)  评论(0编辑  收藏  举报