pytorch中使用tensorboard
完整代码见我的github
pytorch handbook
官方介绍tensorboard官方turtorial
显示图片
cat_img = Image.open('cat.jpg')
transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
cat_img_224 = transform(cat_img)
writer = SummaryWriter(log_dir='logs/1', comment='cat_image')
writer.add_image('cat', cat_img_224)
writer.close()
显示标量
x = torch.FloatTensor([1])
y = torch.FloatTensor([1])
for epoch in range(30):
new_x = x + epoch
new_y = y + 2*epoch
loss = new_y - new_x
with SummaryWriter(log_dir='./logs/2', comment='train') as writer: #可以直接使用python的with语法,自动调用close方法
# writer.add_histogram('his/x', x, epoch)
# writer.add_histogram('his/y', y, epoch)
writer.add_scalar('x', new_x, epoch)
writer.add_scalar('y', new_y, epoch)
writer.add_scalar('loss', loss, epoch)
# writer.add_scalars('data/data_group', {'x': x,
# 'y': y}, epoch)
x = torch.FloatTensor([5])
y = torch.FloatTensor([5])
for epoch in range(30):
new_x = x + epoch
new_y = y + 2*epoch
loss = new_y - new_x
with SummaryWriter(log_dir='./logs/3', comment='train') as writer: #可以直接使用python的with语法,自动调用close方法
# writer.add_histogram('his/x', x, epoch)
# writer.add_histogram('his/y', y, epoch)
writer.add_scalar('x', new_x, epoch)
writer.add_scalar('y', new_y, epoch)
writer.add_scalar('loss', loss, epoch)
# writer.add_scalars('data/data_group', {'x': x,
# 'y': y}, epoch)