POJ 3259 bell_man求负环 || SPFA(bell_man模板+SPFA)

题目:https://vjudge.net/problem/POJ-3259

 

 

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, F. F farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2.. M+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2.. M+ W+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1.. F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time.
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
 
 
题意:
给你三个数n,m,w,分别表示有n个农场,m条路,w个黑洞,接下来m行分别有三个数s,e,val表示s到e有一条权值为val 的边,接下来的w行每行有三个数s,e,val表示s到e有一条权值为0-val的边,因为黑洞可以回到过去,所以其权值为负。现在问你给你这些点,求每组数据是否存在一条回路能使时间倒退。
 
 
思路:求负环就行      bell——man模板题            有SPFA的优化版              代码来自https://blog.csdn.net/iceiceicpc/article/details/51986857
          因为自己的代码死都过不了的那种,,查错到失望
 
代码:
  //    bell_man模板


#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<set>
#include<algorithm>
#include<map>
#define maxn 200005
using namespace std;
const int maxv=500+5;
const int maxe=6000+5;
const int INF=0x3f3f3f3f;
struct proc
{
    int s,e,t;    //起点  终点  边权
}edge[maxe];
int n,m,w,dis[maxv];
int cnt;
void addEdge(int s,int e,int t)   //建立图
{
    edge[cnt].s=s;
    edge[cnt].e=e;
    edge[cnt++].t=t;
}
int bell_man()
{
    bool flag;
    //松弛
    for(int i=1;i<=n;i++)
    {
        flag=false;
        for(int j=1;j<=cnt;j++)
        {
            if(dis[edge[j].e]>dis[edge[j].s]+edge[j].t)
            {
                dis[edge[j].e]=dis[edge[j].s]+edge[j].t;
                flag=true;
            }
        }
        if(!flag) break;
    }
    //寻找负环,判断条件是负环可以无限松弛。
    for(int i=1;i<=cnt;i++)
    {
        if(dis[edge[i].e]>dis[edge[i].s]+edge[i].t)
        {
            return true;
        }
    }
    return false;
}

int main()
{
    int s,e,v;
    int cas;
    scanf("%d",&cas);
    while(cas--)
    {
        memset(dis,INF,sizeof(dis));
        cnt=1;
        scanf("%d %d %d",&n,&m,&w);
        for(int i=1;i<=m;i++)
        {
            scanf("%d %d %d",&s,&e,&v);
            addEdge(s,e,v);
            addEdge(e,s,v);
        }
        for(int i=1;i<=w;i++)
        {
            scanf("%d %d %d",&s,&e,&v);
            addEdge(s,e,0-v);
        }
        int ans=bell_man();
        if(ans) printf("YES\n");
        else printf("NO\n");
    }
    return 0;
}

      //   SPFA优化模板
//
//#include <iostream>
//#include <cstdio>
//#include <cstring>
//#include <algorithm>
//#include <queue>
//
//using namespace std;
//const int maxn=500+5;
//const int maxe=6000+5;
//const int INF=0x7fffffff;
//
//struct proc
//{
//    int v,w;
//    int next;
//};
//
//proc edge[maxe];
//int dis[maxn],vis[maxn],f,n,m,w,head[maxe];
//int cnt[maxn];
//
//int k;
//void addEdge(int u,int v,int w)
//{
//    edge[k].v=v;
//    edge[k].w=w;
//    edge[k].next=head[u];
//    head[u]=k++;
//}
//
//bool spfa()
//{
//    for(int i=0;i<=n;i++)
//    {
//        dis[i]=INF;
//    }
//    memset(cnt,0,sizeof(cnt));
//    memset(vis,0,sizeof(vis));
//    queue<int> q;
//    vis[1]=1;
//    dis[1]=0;
//    cnt[1]=1;
//    q.push(1);
//    while(!q.empty())
//    {
//        int cur=q.front();
//        q.pop();
//        vis[cur]=false;
//        for(int i=head[cur];i+1;i=edge[i].next)
//        {
//            int id=edge[i].v;
//            if(dis[cur]+edge[i].w<dis[id])
//            {
//                dis[id]=dis[cur]+edge[i].w;
//                if(!vis[id])
//                {
//                    cnt[id]++;
//                    if(cnt[cur]>=n)
//                        return false;
//                    vis[id]=true;
//                    q.push(id);
//                }
//            }
//        }
//    }
//    return true;
//}
//
//int main()
//{
//    while(~scanf("%d",&f))
//    {
//        while(f--)
//        {
//            scanf("%d %d %d",&n,&m,&w);
//            k=0;
//            memset(head,-1,sizeof(head));
//            int s,e,val;
//            for(int i=0;i<m;i++)
//            {
//                scanf("%d %d %d",&s,&e,&val);
//                addEdge(s,e,val);
//                addEdge(e,s,val);
//            }
//            for(int i=0;i<w;i++)
//            {
//                scanf("%d %d %d",&s,&e,&val);
//                addEdge(s,e,0-val);
//            }
//            if(spfa()) printf("NO\n");
//            else printf("YES\n");
//        }
//    }
//}

 

 SPFA的详解:   https://blog.csdn.net/acm_1361677193/article/details/48211319
 
 

 

posted @ 2018-04-15 15:12  姿态H  阅读(161)  评论(0编辑  收藏  举报