9、主成分分析
摘要:
一、用自己的话描述出其本身的含义: 1、特征选择 特征选择能剔除不相关或冗余的特征,从而达到减少特征个数,提高模型精确度,减少运行时间的目的。 另一方面,选取出真正相关的特征简化模型,协助理解数据产生的过程。 2、PCA 把多个指标转化为少数几个综合指标,同时保留住较多的原数据点的特性,使数据能更好 阅读全文
posted @ 2020-04-30 23:04 321木头人123 阅读(133) 评论(0) 推荐(0) 编辑