第十一次作业
1. 文法 G(S):
(1)S -> AB
(2)A ->Da|ε
(3)B -> cC
(4)C -> aADC |ε
(5)D -> b|ε
验证文法 G(S)是不是 LL(1)文法?
Select(C -> aADC) = First(aADC) = {a} Select(C -> ε) = (Follow(ε)-{ε})∪Follow(C) = {ε}
Select(D -> b) = First(b) = {b} Select(D -> ε) = (Follow(ε)-{ε})∪Follow(D) = {a,#}
∵Select(A -> Da) ∩ Select(A -> ε) ≠ ∅ Select(C -> aADC) ∩ Select(C -> ε) = ∅ Select(D -> b) ∩ Select(D -> ε) = ∅
∴文法G(s)不是LL(1)文法。
2.法消除左递归之后的表达式文法是否是LL(1)文法?
Select(E' -> +TE') = First(+TE') = {+} Select(E' -> ε) = (First(ε)-{ε})∪Follow(E') = {),#} Select(T' -> *FT') = First(*FT') = {*} Select(T' -> ε) = (First(ε)-{ε})∪Follow(T') = {#,+,)}
Select(F -> (E)) = First((E)) = {(} Select(F -> i ) = First(i) = {i}
∵Select(E' -> +TE') ∩ Select(E' -> ε) = ∅ Select(T' -> *FT') ∩ Select(T' -> ε) = ∅ Select(F -> (E)) ∩ Select(F -> i ) = ∅
∴ 文法G‘(s)是LL(1)文法。
3.接2,如果是LL(1)文法,写出它的递归下降语法分析程序代码。
E()
{T();
E'();
}
E'()
T()
T'()
F()
解:
void ParseE(){
switch(lookahead){
case (,i:
ParseT();
ParseE'();
break;
default:
printf("syntax error \n");
exit(0);
}
}
void ParseE'(){
switch(lookahead){
case +:
MatchToken(+);
ParseT();
ParseE'();
break;
case #,):
break;
default:
printf("syntax error \n");
exit(0);
}
}
void ParseT(){
switch(lookahead){
case (,i:
ParseF();
ParseT'();
break;
default:
printf("syntax error \n");
exit(0);
}
}
void ParseT'(){
switch(lookahead){
case *:
MatchToken(*);
ParseF();
ParseT'();
break;
case #,),+:
break;
default:
printf("syntax error \n");
exit(0);
}
}
void ParseF(){
switch(lookahead){
case (:
MatchToken(();
ParseE()
MatchToken());
break;
case i:
MatchToken(i);
break;
default:
printf("syntax error \n");
exit(0);
}
}
4.加上实验一的词法分析程序,形成可运行的语法分析程序,分析任意输入的符号串是不是合法的表达式。