1. 前言
在约束最优化问题中,常常利用拉格朗日对偶性将原始问题转化为对偶问题,通过求解对偶问题获得原始问题的解。该方法应用在许多统计学方法中,如最大熵模型、支持向量机。
2. 原始问题
假设\(f(x),c_i(x),h_j(x)\)是定义在\(R^n\)上的连续可微函数。考虑如下最优化问题
\[\min_{x\in R^n}f(x)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(1)
\]
\[s.t. \; c_i(x)\leq0, \; i=1,2,...,k
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; (2)
\]
\[\;\;\;\;\;\;\; h_j(x)=0, \; j=1,2,...,l
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; (3)
\]
称此约束最优化问题为原始最优化问题或原始问题。
引入广义拉格朗日函数
\[L(x,\alpha,\beta)=f(x)+\sum_{i=1}^k\alpha_ic_i(x)+\sum_{j=1}^l\beta_jh_j(x)
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; (4)
\]
这里, \(\alpha_i,\beta_j\)是拉格朗日乘子,\(\alpha_i≥0\). 考虑\(x\)的函数,这里下标\(P\)表示原始问题。
\[\theta_P(x)=\max_{\alpha,\beta;\alpha_i\geq0}L(x,\alpha,\beta)
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; (5)
\]
容易得到:当\(x\)满足原始问题约束时,\(\theta_P(x)=f(x)\),则可得到与原始优化问题想等价的极小化问题如下:
\[\min_{x}\theta_P(x)=\min_{x}\max_{\alpha,\beta;\alpha_i\geq0}L(x,\alpha,\beta)
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; (6)
\]
此问题称为广义拉格朗日函数的极小极大问题。
定义原始问题的最优值
\[p^*=\min_{x}\theta_P(x)
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; (7)
\]
3. 对偶问题(dual problem)
关于对偶问题,我们首先定义:
\[\theta_D(\alpha,\beta)=\min_{x}L(x,\alpha,\beta)
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; (8)
\]
再考虑极大化上式:
\[\max_{\alpha,\beta;\alpha_i\geq0}\theta_D(\alpha,\beta)=\max_{\alpha,\beta;\alpha_i\geq0}\min_{x}L(x,\alpha,\beta)
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; (9)
\]
问题\(\max_{\alpha,\beta;\alpha\geq0}\min_{x}L(x,\alpha,\beta)\)称为广义拉格朗日函数的极大极小问题。可将广义拉格朗日函数的极大极小问题表示为约束最优化问题:
\[\max_{\alpha,\beta}\theta_D(\alpha,\beta)=\max_{\alpha,\beta}\min_{x}L(x,\alpha,\beta)
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; (10)
\]
\[s.t.\;\alpha_i\geq0,\; i=1,2,...,k
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; (11)
\]
称为原使问题的对偶问题。定义对偶问题的最优值,称为对偶问题的值。
\[d^*=\max_{\alpha,\beta;\alpha_i\geq0}\theta_D(\alpha,\beta)
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; (12)
\]
4. 原始问题和对偶问题的关系
4.1 定理1
若原始问题和对偶问题都有最优值,则
\[d^*=\max_{\alpha,\beta;\alpha_i\geq0}\min_{x}L(x,\alpha,\beta)\leq\min_{x}\max_{\alpha,\beta;\alpha_i\geq0}L(x,\alpha,\beta)=p^*
\]
4.2 推论1
设\(x^*\)和\(\alpha^*,\beta^*\)分别是原始问题(公式1~3)和对偶问题(公式10~11)的可行解,并且\(d^*=p^*\),则\(x^*\)和\(\alpha^*,\beta^*\)分别是原始问题和对偶问题的最优解。
4.3 定理2
考虑原始问题(公式1~3)和对偶问题(公式10~11). 假设函数\(f(x)\)和\(c_i(x)\)是凸函数,\(h_j(x)\)是仿射函数1; 并且假设不等式约束\(c_i(x)\)是严格可行的, 即存在\(x\), 对所有\(i\)有\(c_i(x)<0\), 则存在\(x^*,\alpha^*,\beta^*\)使\(x^*\)是原始问题的解, \(\alpha^*,\beta^*\)是对偶问题的解,并且
\[p^*=d^*=L(x^*,\alpha^*,\beta^*)
\]
4.4 定理3
对原始问题(公式1~3)和对偶问题(公式10~11), 假设函数\(f(x)\)和\(c_i(x)\)是凸函数,\(h_j(x)\)是仿射函数,并且不等式约束\(c_i(x)\)是严格可行的, 则\(x^*\)和\(\alpha^*,\beta^*\)分别是原始问题和对偶问题的解的充分必要条件是\(x^*,\alpha^*,\beta^*\)满足KKT条件:
\[\nabla_xL(x^*,\alpha^*,\beta^*)=0
\]
\[\nabla_\alpha L(x^*,\alpha^*,\beta^*)=0
\]
\[\nabla_\beta L(x^*,\alpha^*,\beta^*)=0
\]
\[\alpha_i^*c_i(x^*)=0, \; i=1,2,...,k
\]
\[c_i(x^*)\leq0, \; i=1,2,...,k
\]
\[\alpha_i^*\geq0, \; i=1,2,...,k
\]
\[h_j(x^*)=0, \; j=1,2,...,l
\]