5. EM算法-高斯混合模型GMM+Lasso

1. EM算法-数学基础

2. EM算法-原理详解

3. EM算法-高斯混合模型GMM

4. EM算法-GMM代码实现

5. EM算法-高斯混合模型+Lasso

1. 前言

前面几篇博文对EM算法和GMM模型进行了介绍,本文我们通过对GMM增加一个惩罚项。

2. 不带惩罚项的GMM

原始的GMM的密度函数是

\[p(\boldsymbol{x}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma})=\sum_{k=1}^K\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k) \]

\[\sum_{k=1}^K\pi_k=1 \]

其中\(K\)是高斯组件的个数,\([\pi_1,\pi_2,...,\pi_k]\)是每个组件的权重。其中的\(\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k\)是组件\(k\)的均值和协方差矩阵。

log极大似然函数的公式是:

\[L(\theta,\theta^{(j)})=\sum_{k=1}^Kn_k[log\pi_k-\frac{1}{2}(log(\boldsymbol{\Sigma_k})+\frac{{(x_i-\boldsymbol{\mu}_k})^2}{\boldsymbol{\Sigma}_k})]\;\;\;\;\;(1) \]

这里有一个响应度的变量\(\gamma_{ik}\),响应度\(\gamma_{ik}\)代表了第\(i\)个样本,在第\(k\)个组件上的响应程度。响应度的计算公式也很简单。

\[\gamma_{ik}=\frac{\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}{\sum_{k=1}^K\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)} \]

通过\(L(\theta, \theta^{j})\)\(\mu_k\)\(\Sigma_k\)求偏倒等于0得到

\[\mu_k=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}x_i\;\;\;\;\;(2) \]

\[\Sigma_k=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}(x_i-\mu_k)^2 \]

\[\pi_k=\frac{n_k}{N} \]

其中的\(n_k=\sum_{i=1}^N\gamma_{ik}\)

到这里为止我们不带惩罚项的所有变量都计算出来了,只要一直循环E步M步,就能使得loglikelihood最大化。

3. 带惩罚项的GMM

在带penality的GMM中,我们假设协方差是一个对角矩阵,这样的话,我们计算高斯密度函数的时候,只需要把样本各个维度与对应的\(\mu_k\)\(\sigma_k\)计算一维高斯分布,再相加即可。不需要通过多维高斯进行计算,也不需要协方差矩阵是半正定的要求。

我们给上面的(1)式加入一个惩罚项,

\[\lambda\sum_{k=1}^K\sum_{j=1}^P\frac{|\mu_k-\bar{x}_j|}{s_j} \]

其中的\(P\)是样本的维度。\(\bar{x}_j\)表示每个维度的平均值,\(s_j\)表示每个维度的标准差。这个penality是一个L1范式,对\(\mu_k\)进行约束。

加入penality后(1)变为

\[L(\theta,\theta^{(j)})=\sum_{k=1}^Kn_k[log\pi_k-\frac{1}{2}(log(\boldsymbol{\Sigma_k})+\frac{{(x_i-\boldsymbol{\mu}_k})^2}{\boldsymbol{\Sigma}_k})] - \lambda\sum_{k=1}^K\sum_{j=1}^P\frac{|\mu_k-\bar{x}_j|}{s_j} \]

这里需要注意的一点是,因为penality有一个绝对值,所以在对\(\mu_k\)求导的时候,需要分情况。于是(2)变成了

\[\mu_k=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}x_i \]

\[\mu_k= \left \{\begin{array}{cc} \frac{1}{n_k}(\sum_{i=1}^N\gamma_{ik}x_i - \frac{\lambda\sigma^2}{s_j}), & \mu_k >= \bar{x}_j\\ \frac{1}{n_k}(\sum_{i=1}^N\gamma_{ik}x_i + \frac{\lambda\sigma^2}{s_j}), & \mu_k < \bar{x}_j \end{array}\right. \]

3.1 注意点

  • 在带有penality的GMM中,如果从一开始迭代时,\(\lambda>0\)那这时loglikelihood很容易陷入一个局部最大值。如果前几个迭代我们先令\(\lambda=0\),而后在令\(\lambda>0\),这样能够寻找到一个比较好的最大值点。
  • 由于在算EM的时候,很容易出现underflow活着overflow,这是我们可以通过一个近似公式来避开这个问题。

\[log(\sum_hexp(a_h)) = m + log(\sum_hexp(a_h - m))\;\;\;m=max(a_h) \]

  • 初始值很影响EM的聚类的结果,所以我们需要改变seed来多次运行程序,寻找导最好的EM结果。

4. 总结

本文对GMM模型进行了改良,加入了L1的penality项,使得\(\mu_k\)不会偏离\(\bar{x}_j\)太大,导致过拟合。下一篇博客通过代码,详细的展示这个过程。

posted @ 2019-01-16 08:31  hyc339408769  阅读(3228)  评论(0编辑  收藏  举报