博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

chess--排列组合题

Posted on 2012-08-18 11:29  皇星客栈--Linux  阅读(261)  评论(0编辑  收藏  举报

                             A.Chess

Problem Description

We have a chessboard, as the figure below, it shows the chessboard with dimension 1, 3, 5, 7 (We ignore the even number).Now, your task is to place K bishops on the n – dimension chessboard and satisfied that none of then attack each other ( A bishop can move to any distance in any of the four diagonal directions).

Input

输入包含两个整数n(n < 100 & & n % 2 = = 1)和k(k < = 10000)之间用一个空格分开。

Output

输出的答案mod 100007.

Sample Input

7 3
1 1

Sample Output

1038
1
第一种方法:

View Code
 1 #include<stdio.h>
 2 
 3 __int64 Q[50];
 4 #define mod 100007
 5 
 6 __int64 xiangqi( __int64 n,__int64 k )
 7 {
 8     __int64 i;
 9     __int64 j;
10     __int64 sum=1;
11 
12     for( i = 1; i <= n ; i++ )
13         Q[i] = i*i;
14     for( i = k; i >=2 ; i-- )
15     {    
16         j = 1;
17         while( i * j <= n )
18         {
19             if( j*i >= n-k+1 && Q[i*j] % i == 0 )
20             {
21                 Q[i*j] /= i ;
22                 break;
23             }
24             j++;
25         }
26     }
27     for( i = n ; i >= n-k+1 ; i-- )
28     {
29         sum *= Q[i]%mod;
30         sum %= mod;
31     }
32     return sum;
33 }
34 
35     
36 
37 int main( )
38 {
39     int n;
40     int k;
41     int num1;
42     int num2;
43     __int64 sum;
44     int i;
45 
46     while( scanf("%d %d",&n,&k) == 2 )
47     {
48         
49         sum = 0;
50         if( n < 100 && n % 2 == 1 )
51         {
52             if( k > n )
53             { printf("0\n"); continue; }
54             if( n == 1 )
55             { printf("1\n"); continue; }
56             num1 = (n+1)/2;
57             num2 = num1 - 1;
58 
59             for( i = k; i >= 0 ; i-- )
60             {
61                 if( i > num1 || k - i > num2 )
62                     continue;
63                 sum += xiangqi(num1,i)*xiangqi(num2,k-i)%mod;
64                 sum %= mod;
65             }
66         }
67         printf("%I64d\n",sum);
68     }
69     return 0;
70 }

   第二种方法 :

View Code
 1 #include <iostream>
 2 
 3 using namespace std;
 4 #define MOD 100007
 5 int n, k;
 6 __int64 dp[2][101][101];
 7 
 8 void DP( int mod, int n ) {
 9 
10     int i, j;
11     for(i = 0; i <= n; i++) {
12         for(j = 0; j <= n; j++) {
13             dp[ mod ][i][j] = 0;
14         }
15     }
16     dp[ mod ][0][0] = 1;
17     for( i = 1; i <= n; i++) {
18         dp[mod][i][0] = 1;
19         for(j = 1; j <= n; j++) {
20             dp[mod][i][j] = dp[mod][i-1][j];
21             dp[mod][i][j] += dp[mod][i-1][j-1] * ( n - j + 1 ) % MOD;
22             dp[mod][i][j] %= MOD;
23         }
24     }
25 }
26 
27 int main() {
28     int i;
29 
30     /*freopen ("1005.in", "r", stdin );
31     freopen ("1005.out", "w", stdout );*/
32 
33     while( scanf("%d %d", &n, &k) != EOF ) {
34         DP(0, n/2);
35         DP(1, n - n/2);
36 
37         if( k > n ) {
38             printf("0\n");
39             continue;
40         }
41 
42         __int64 sum = 0;
43         for(i = 0; i <= k; i++) {
44             if( i > n || k-i > n )
45                 continue;
46             sum = sum + ( dp[0][n/2][i] * dp[1][n-n/2][k-i] ) % MOD;
47             sum %= MOD;
48         }
49         printf("%I64d\n", sum);
50     }
51     return 0;
52 }