20200913 第 13 章 图
第 13 章 图
13.1 图基本介绍
13.1.1 为什么要有图
- 前面我们学了线性表和树
- 线性表局限于一个直接前驱和一个直接后继的关系
- 树也只能有一个直接前驱也就是父节点
- 当我们需要表示多对多的关系时, 这里我们就用到了图
13.1.2 图的举例说明
图是一种数据结构, 其中结点可以具有零个或多个相邻元素。 两个结点之间的连接称为边。 结点也可以称为顶点。
13.1.3 图的常用概念
- 顶点(vertex)
- 边(edge)
- 路径
- 无向图
- 有向图
- 带权图
13.2 图的表示方式
图的表示方式有两种: 二维数组表示(邻接矩阵) ; 链表表示(邻接表) 。
13.2.1 邻接矩阵
邻接矩阵是表示图形中顶点之间相邻关系的矩阵, 对于 n 个顶点的图而言, 矩阵是的 row 和 col 表示的是 1....n 个点。
13.2.2 邻接表
- 邻接矩阵需要为每个顶点都分配 n 个边的空间, 其实有很多边都是不存在,会造成空间的一定损失.
- 邻接表的实现只关心存在的边, 不关心不存在的边。 因此没有空间浪费, 邻接表由数组+链表组成
- 举例说明
13.3 图的快速入门案例
- 要求: 代码实现如下图结构.
- 思路分析
- 存储顶点String 使用 ArrayList
- 保存矩阵
int[][] edges
A B C D E
A 0 1 1 0 0
B 1 0 1 1 1
C 1 1 0 0 0
D 0 1 0 0 0
E 0 1 0 0 0
//说明
//(1) 1 表示能够直接连接
//(2) 0 表示不能直接连接
13.4 图的深度优先遍历介绍
13.4.1 图遍历介绍
所谓图的遍历, 即是对结点的访问。 一个图有那么多个结点, 如何遍历这些结点, 需要特定策略, 一般有两种访问策略:
- 深度优先遍历
- 广度优先遍历
13.4.2 深度优先遍历基本思想
图的深度优先搜索(Depth First Search) 。
- 深度优先遍历, 从初始访问结点出发, 初始访问结点可能有多个邻接结点, 深度优先遍历的策略就是首先访问第一个邻接结点, 然后再以这个被访问的邻接结点作为初始结点, 访问它的第一个邻接结点, 可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
- 我们可以看到, 这样的访问策略是优先往纵向挖掘深入, 而不是对一个结点的所有邻接结点进行横向访问。
- 显然, 深度优先搜索是一个递归的过程
13.4.3 深度优先遍历算法步骤
- 访问初始结点 v, 并标记结点 v 为已访问。
- 查找结点 v 的第一个邻接结点 w。
- 若 w 存在, 则继续执行 4, 如果 w 不存在, 则回到第 1 步, 将从 v 的下一个结点继续。
- 若 w 未被访问, 对 w 进行深度优先遍历递归(即把 w 当做另一个 v, 然后进行步骤 123) 。
- 查找结点 v 的 w 邻接结点的下一个邻接结点, 转到步骤 3。
13.5 图的广度优先遍历
13.5.1 广度优先遍历基本思想
- 图的广度优先搜索(Broad First Search) 。
- 类似于一个分层搜索的过程, 广度优先遍历需要使用一个队列以保持访问过的结点的顺序, 以便按这个顺序来
访问这些结点的邻接结点
13.5.2 广度优先遍历算法步骤
-
访问初始结点 v 并标记结点 v 为已访问。
-
结点 v 入队列
-
当队列非空时, 继续执行, 否则算法结束。
-
出队列, 取得队头结点 u。
-
查找结点 u 的第一个邻接结点 w。
-
若结点 u 的邻接结点 w 不存在, 则转到步骤 3; 否则循环执行以下三个步骤:
6.1 若结点 w 尚未被访问, 则访问结点 w 并标记为已访问。
6.2 结点 w 入队列
6.3 查找结点 u 的继 w 邻接结点后的下一个邻接结点 w, 转到步骤 6。
13.6 代码实现
public class Graph {
private ArrayList<String> vertexList; //存储顶点集合
private int[][] edges; //存储图对应的邻结矩阵
private int numOfEdges; //表示边的数目
//定义给数组boolean[], 记录某个结点是否被访问
private boolean[] isVisited;
public static void main(String[] args) {
//测试一把图是否创建ok
int n = 8; //结点的个数
//String Vertexs[] = {"A", "B", "C", "D", "E"};
String Vertexs[] = {"1", "2", "3", "4", "5", "6", "7", "8"};
//创建图对象
Graph graph = new Graph(n);
//循环的添加顶点
for (String vertex : Vertexs) {
graph.insertVertex(vertex);
}
//添加边
//A-B A-C B-C B-D B-E
// graph.insertEdge(0, 1, 1); // A-B
// graph.insertEdge(0, 2, 1); //
// graph.insertEdge(1, 2, 1); //
// graph.insertEdge(1, 3, 1); //
// graph.insertEdge(1, 4, 1); //
//更新边的关系
graph.insertEdge(0, 1, 1);
graph.insertEdge(0, 2, 1);
graph.insertEdge(1, 3, 1);
graph.insertEdge(1, 4, 1);
graph.insertEdge(3, 7, 1);
graph.insertEdge(4, 7, 1);
graph.insertEdge(2, 5, 1);
graph.insertEdge(2, 6, 1);
graph.insertEdge(5, 6, 1);
//显示一把邻结矩阵
graph.showGraph();
//测试一把,我们的dfs遍历是否ok
System.out.println("深度遍历");
graph.dfs(); // A->B->C->D->E [1->2->4->8->5->3->6->7]
// System.out.println();
System.out.println("广度优先!");
graph.bfs(); // A->B->C->D-E [1->2->3->4->5->6->7->8]
}
//构造器
public Graph(int n) {
//初始化矩阵和vertexList
edges = new int[n][n];
vertexList = new ArrayList<String>(n);
numOfEdges = 0;
}
//得到第一个邻接结点的下标 w
/**
* @param index
* @return 如果存在就返回对应的下标,否则返回-1
*/
public int getFirstNeighbor(int index) {
for (int j = 0; j < vertexList.size(); j++) {
if (edges[index][j] > 0) {
return j;
}
}
return -1;
}
//根据前一个邻接结点的下标来获取下一个邻接结点
public int getNextNeighbor(int v1, int v2) {
for (int j = v2 + 1; j < vertexList.size(); j++) {
if (edges[v1][j] > 0) {
return j;
}
}
return -1;
}
//深度优先遍历算法
//i 第一次就是 0
private void dfs(boolean[] isVisited, int i) {
//首先我们访问该结点,输出
System.out.print(getValueByIndex(i) + "->");
//将结点设置为已经访问
isVisited[i] = true;
//查找结点i的第一个邻接结点w
int w = getFirstNeighbor(i);
while (w != -1) {//说明有
if (!isVisited[w]) {
dfs(isVisited, w);
}
//如果w结点已经被访问过
w = getNextNeighbor(i, w);
}
}
//对dfs 进行一个重载, 遍历我们所有的结点,并进行 dfs
public void dfs() {
isVisited = new boolean[vertexList.size()];
//遍历所有的结点,进行dfs[回溯]
for (int i = 0; i < getNumOfVertex(); i++) {
if (!isVisited[i]) {
dfs(isVisited, i);
}
}
}
//对一个结点进行广度优先遍历的方法
private void bfs(boolean[] isVisited, int i) {
int u; // 表示队列的头结点对应下标
int w; // 邻接结点w
//队列,记录结点访问的顺序
LinkedList queue = new LinkedList();
//访问结点,输出结点信息
System.out.print(getValueByIndex(i) + "=>");
//标记为已访问
isVisited[i] = true;
//将结点加入队列
queue.addLast(i);
while (!queue.isEmpty()) {
//取出队列的头结点下标
u = (Integer) queue.removeFirst();
//得到第一个邻接结点的下标 w
w = getFirstNeighbor(u);
while (w != -1) {//找到
//是否访问过
if (!isVisited[w]) {
System.out.print(getValueByIndex(w) + "=>");
//标记已经访问
isVisited[w] = true;
//入队
queue.addLast(w);
}
//以u为前驱点,找w后面的下一个邻结点
w = getNextNeighbor(u, w); //体现出我们的广度优先
}
}
}
//遍历所有的结点,都进行广度优先搜索
public void bfs() {
isVisited = new boolean[vertexList.size()];
for (int i = 0; i < getNumOfVertex(); i++) {
if (!isVisited[i]) {
bfs(isVisited, i);
}
}
}
//图中常用的方法
//返回结点的个数
public int getNumOfVertex() {
return vertexList.size();
}
//显示图对应的矩阵
public void showGraph() {
for (int[] link : edges) {
System.err.println(Arrays.toString(link));
}
}
//得到边的数目
public int getNumOfEdges() {
return numOfEdges;
}
//返回结点i(下标)对应的数据 0->"A" 1->"B" 2->"C"
public String getValueByIndex(int i) {
return vertexList.get(i);
}
//返回v1和v2的权值
public int getWeight(int v1, int v2) {
return edges[v1][v2];
}
//插入结点
public void insertVertex(String vertex) {
vertexList.add(vertex);
}
//添加边
/**
* @param v1 表示点的下标即使第几个顶点 "A"-"B" "A"->0 "B"->1
* @param v2 第二个顶点对应的下标
* @param weight 表示
*/
public void insertEdge(int v1, int v2, int weight) {
edges[v1][v2] = weight;
edges[v2][v1] = weight;
numOfEdges++;
}
}
13.8 图的深度优先 VS 广度优先
- 深度优先遍历顺序为 1->2->4->8->5->3->6->7
- 广度优先算法的遍历顺序为:1->2->3->4->5->6->7->8