Policy Gradient

Policy Gradient是区别于Q-Learning为代表的value based的方法。policy gradient又可以叫reinforce算法(Williams, 1992)。

 

如今的ACTOR-CRITIC也就是基于policy gradient。该方法不能制表,只能对policy进行参数化。

 

然后它能处理连续action输出的问题。

 

DDPG似乎又不太一样,难道DDPG的任务都要求policy网络参数初始化很好,以便action不会陷入局部最优?所以要多训练几个policy网络?

 

posted @   Shiyu_Huang  阅读(544)  评论(0编辑  收藏  举报
编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
历史上的今天:
2017-03-27 Gephi
2017-03-27 Python之登录
点击右上角即可分享
微信分享提示