Generalization and Equilibrium in Generative Adversarial Nets
Paper link: https://arxiv.org/abs/1703.00573
Blog link: http://www.offconvex.org/2017/03/30/GANs2/
Github: https://github.com/PrincetonML/MIX-plus-GANs
作者指出原先的工作都假设Discriminator有无限的表示能力,但是其实当Discriminator表示能力有限的时候,Generator只需要拟合一部分训练数据就能把损失函数降到比较小的值。这说明扩大训练样本对于训练GAN没有太大的作用,而且Generator的diversity也受到了限制。作者提出了MIX+GAN的模型,一个是增强了Discriminator的能力,一个是让其训练能够收敛到一个波动范围内的均衡点。作者在算法中加入熵正则项,防止混合模型坍缩为单个模型。理论分析很多,但个人感觉实验效果也不是很明显。
黄世宇/Shiyu Huang's Personal Page:https://huangshiyu13.github.io/
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧