无偏估计(Unbiased Estimator)
无偏估计是参数的样本估计量的期望值等于参数的真实值。
一个简单的例子(https://www.zhihu.com/question/22983179/answer/23470969):
比如我要对某个学校一个年级的上千个学生估计他们的平均水平(真实值,上帝才知道的数字),那么我决定抽样来计算。
我抽出一个10个人的样本,可以计算出一个均值。那么如果我下次重新抽样,抽到的10个人可能就不一样了,那么这个从样本里面计算出来的均值可能就变了,对不对?
因为这个均值是随着我抽样变化的,而我抽出哪10个人来计算这个数字是随机的,那么这个均值也是随机的。但是这个均值也会服从一个规律(一个分布),那就是如果我抽很多次样本,计算出很多个这样的均值,这么多均值们的平均数应该接近上帝才知道的真实平均水平。
如果你能理解“样本均值”其实也是一个随机变量,那么就可以理解为这个随机变量的期望是真实值,所以无偏(这是无偏的定义);而它又是一个随机变量,只是估计而不精确地等于,所以是无偏估计量。
黄世宇/Shiyu Huang's Personal Page:https://huangshiyu13.github.io/
分类:
Mathmatics
, Probability Theory
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧