调和级数

调和级数

结论:

\(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots + \frac{1}{n-1} + \frac{1}{n} \le \log_2 n\)

  • 该结论常用于分析时间复杂度
  • 比如这一题:点我查看

证明:

公式推导如下
\(\frac{1}{1} \le \frac{1}{1}\)
\(\frac{1}{1} + (\frac{1}{2}) \le \frac{1}{1} + \frac{1}{1}\)
\(\frac{1}{1} + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) \le \frac{1}{1} + \frac{1}{1} + \frac{1}{2}\)
\(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + (\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}) \le \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{4}\)
\(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + (\frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16}) \le \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}\)
  • 上面这些公式显然是正确的
  • 那么发现 \(n\) 不断 \(\times 2\),则 \(\frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n}\) 不断 \(+1\)
  • 那么便证明除了一开始的结论

级数汇总

  • 级数就是无限延伸的一个数
    image
posted @ 2023-08-24 17:01  hhhqx  阅读(45)  评论(0编辑  收藏  举报