题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007
输入描述:
题目保证输入的数组中没有的相同的数字
数据范围:
对于%50的数据,size<=10^4
对于%75的数据,size<=10^5
对于%100的数据,size<=2*10^5
示例1
输入
复制1,2,3,4,5,6,7,0
输出
复制7
题目地址
https://www.nowcoder.com/practice/96bd6684e04a44eb80e6a68efc0ec6c5?tpId=13&tqId=11188&rp=2&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking
思路
思路1:暴力解法,顺序扫描整个数组,每扫描到一个数字的时候,逐个比较该数字和它后面的数字的大小。如果后面的数字比它小,则这两个数字就组成一个逆序对。假设数组中含有n个数字,由于每个数字都要和O(n)个数字作比较,因此这个算法的时间复杂度是O(n^2)。
思路2:分治思想,采用归并排序的思路来处理,如下图,先分后治:
先把数组分解成两个长度为2的子数组,再把这两个子数组分解成两个长度为1的子数组。接下来一边合并相邻的子数组,一边统计逆序对的数目。在第一对长度为1的子数组{7}、{5}中7>5,因此(7,5)组成一个逆序对。同样在第二对长度为1的子数组{6},{4}中也有逆序对(6,4),由于已经统计了这两对子数组内部的逆序对,因此需要把这两对子数组进行排序,避免在之后的统计过程中重复统计。
逆序对的总数 = 左边数组中的逆序对的数量 + 右边数组中逆序对的数量 + 左右结合成新的顺序数组时中出现的逆序对的数量
总结一下:
这是一个归并排序的合并过程,主要是考虑合并两个有序序列时,计算逆序对数。
对于两个升序序列,设置两个下标:两个有序序列的末尾。每次比较两个末尾值,如果前末尾大于后末尾值,则有”后序列当前长度“个逆序对;否则不构成逆序对。然后把较大值拷贝到辅助数组的末尾,即最终要将两个有序序列合并到辅助数组并有序。
这样,每次在合并前,先递归地处理左半段、右半段,则左、右半段有序,且左右半段的逆序对数可得到,再计算左右半段合并时逆序对的个数。
Python
# -*- coding:utf-8 -*- class Solution: def InversePairs(self, data): # write code her if len(data)<=1: return 0 # 思路1:运行超时 # p = 0 # for i in range(len(data)-1): # for j in range(i+1,len(data)): # if data[i] > data[j]: # p += 1 # return p % 1000000007 # 思路2:归并排序 temp = [x for x in data] return self.MSort(data,temp,0,len(data)-1)% 1000000007 def MSort(self,data,temp,low,high): if low>=high: temp[low] = data[low] return 0 mid = (low+high)//2 left = self.MSort(temp,data,low,mid) right = self.MSort(temp,data,mid+1,high) count = 0 i = low j = mid+1 index = low while i <=mid and j <= high: if data[i]<=data[j]: temp[index] = data[i] i += 1 else: temp[index] = data[j] j += 1 count += mid-i+1 index += 1 while i <= mid: temp[index] = data[i] i += 1 index += 1 while j <= high: temp[index] = data[j] j += 1 index += 1 return count + left + right if __name__ == '__main__': result = Solution().InversePairs([1,2,3,0]) print(result)
作者:huangqiancun
出处:http://www.cnblogs.com/huangqiancun/
本博客若无特殊说明则由作者原创发布,欢迎转载,但请注明出处 :)