浏览器标题切换
浏览器标题切换end

LightOJ-1007-Mathematically Hard-欧拉函数打表+前缀和+预处理

Mathematically some problems look hard. But with the help of the computer, some problems can be easily solvable.

In this problem, you will be given two integers a and b. You have to find the summation of the scores of the numbers froma to b (inclusive). The score of a number is defined as the following function.

score (x) = n2, where n is the number of relatively prime numbers with x, which are smaller than x

For example,

For 6, the relatively prime numbers with 6 are 1 and 5. So, score (6) = 22 = 4.

For 8, the relatively prime numbers with 8 are 1, 3, 5 and 7. So, score (8) = 42 = 16.

Now you have to solve this task.

Input

Input starts with an integer T (≤ 105), denoting the number of test cases.

Each case will contain two integers a and b (2 ≤ a ≤ b ≤ 5 * 106).

Output

For each case, print the case number and the summation of all the scores from a to b.

Sample Input

3

6 6

8 8

2 20

Sample Output

Case 1: 4

Case 2: 16

Case 3: 1237

Note

 

题意:

   不是求区间内素数个数的平方和,是求区间内欧拉函数值的平方和

思路:欧拉函数打表(模板)+前缀和+预处理不然TLE

 

求欧拉函数1-N的打表模板:

 1 void init()
 2 {
 3     memset(ans,0,sizeof(ans));//一定要清空
 4     ans[1]=1;
 5     for(int i=2; i<=N; i++)
 6     {
 7         if(ans[i]==0)
 8         {
 9             for(int j=i; j<=N; j+=i)
10             {
11                 if(ans[j]==0)
12                 {
13                     ans[j]=j;
14                 }
15                 ans[j]=ans[j]/i*(i-1);
16             }
17 
18         }
19     }
20 }

 

 1 #include<stdio.h>
 2 #include<map>
 3 #include<string.h>
 4 #include<iostream>
 5 typedef long long ll;
 6 using namespace std;
 7 
 8 const int N=5*1e6+10;
 9 unsigned long long ans[N];//unsigned long long输出是%llu,long long会爆,前者20位,后者19位
10 
11 void init()
12 {
13     memset(ans,0,sizeof(ans));//一定要清空,不然WA
14     ans[1]=1;
15     for(int i=2; i<=N; i++)
16     {
17         if(ans[i]==0)
18         {
19             for(int j=i; j<=N; j+=i)
20             {
21                 if(ans[j]==0)
22                 {
23                     ans[j]=j;
24                 }
25                 ans[j]=ans[j]/i*(i-1);
26             }
27 
28         }
29     }//欧拉函数打表
30     for(int i=1; i<=N; i++)
31     {
32         ans[i]=ans[i-1]+ans[i]*ans[i];//计算前缀和
33     }
34 }
35 int main()
36 {
37     init();
38     int tt=1,t;
39     scanf("%d",&t);
40     while(t--)
41     {
42         int a,b;
43         scanf("%d %d",&a,&b);
44         printf("Case %d: %llu\n",tt++,ans[b]-ans[a-1]);//取区间,左端区间-1,别弄错了
45     }
46 
47     return 0;
48 }

 

posted @ 2019-08-13 15:58  抓水母的派大星  阅读(189)  评论(0编辑  收藏  举报