……

一、数仓搭建 - DWD 层

  • 1)对用户行为数据解析
  • 2)对核心数据进行判空过滤
  • 3)对业务数据采用维度模型重新建模,即维度退化


1.1 DWD 层(用户行为启动表数据解析)



1.1.1 创建启动表 1)建表语句

drop table if exists dwd_start_log;
CREATE EXTERNAL TABLE dwd_start_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`entry` string,
`open_ad_type` string,
`action` string,
`loading_time` string,
`detail` string,
`extend1` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_start_log/'
TBLPROPERTIES('parquet.compression'='lzo');

说明:数据采用 parquet 存储方式,是可以支持切片的,不需要再对数据创建索引

1.1.2 get_json_object 函数使用

1)输入数据 xjson

Xjson=[{"name":" 大 郎 ","sex":" 男 ","age":"25"},{"name":" 西 门 庆 ","sex":" 男","age":"47"}]

2)取出第一个 json 对象

SELECT get_json_object(xjson,"$.[0]") FROM person;

结果是:{“name”:“大郎”,“sex”:“男”,“age”:“25”}

3)取出第一个 json 的 age 字段的值

SELECT get_json_object(xjson,"$.[0].age") FROM person;

结果是:25

1.1.3 向启动表导入数据

insert overwrite table dwd_start_log
PARTITION (dt='2020-03-10')
select
get_json_object(line,'$.mid') mid_id,
get_json_object(line,'$.uid') user_id,
get_json_object(line,'$.vc') version_code,
get_json_object(line,'$.vn') version_name,
get_json_object(line,'$.l') lang,
get_json_object(line,'$.sr') source,
get_json_object(line,'$.os') os,
get_json_object(line,'$.ar') area,
get_json_object(line,'$.md') model,
get_json_object(line,'$.ba') brand,
get_json_object(line,'$.sv') sdk_version,
get_json_object(line,'$.g') gmail,
get_json_object(line,'$.hw') height_width,
get_json_object(line,'$.t') app_time,
get_json_object(line,'$.nw') network,
get_json_object(line,'$.ln') lng,
get_json_object(line,'$.la') lat,
get_json_object(line,'$.entry') entry,
get_json_object(line,'$.open_ad_type') open_ad_type,
get_json_object(line,'$.action') action,
get_json_object(line,'$.loading_time') loading_time,
get_json_object(line,'$.detail') detail,
get_json_object(line,'$.extend1') extend1
from ods_start_log
where dt='2020-03-10';

3)测试

select * from dwd_start_log where dt='2020-03-10' limit 2;

1.1.4 DWD 层启动表加载数据脚本

1)vim ods_to_dwd_log.sh
在脚本中编写如下内容

#!/bin/bash
# 定义变量方便修改
APP=gmall
hive=/opt/modules/hive/bin/hive
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table "$APP".dwd_start_log
PARTITION (dt='$do_date')
select
get_json_object(line,'$.mid') mid_id,
get_json_object(line,'$.uid') user_id,
get_json_object(line,'$.vc') version_code,
get_json_object(line,'$.vn') version_name,
get_json_object(line,'$.l') lang,
get_json_object(line,'$.sr') source,
get_json_object(line,'$.os') os,
get_json_object(line,'$.ar') area,
get_json_object(line,'$.md') model,
get_json_object(line,'$.ba') brand,
get_json_object(line,'$.sv') sdk_version,
get_json_object(line,'$.g') gmail,
get_json_object(line,'$.hw') height_width,
get_json_object(line,'$.t') app_time,
get_json_object(line,'$.nw') network,
get_json_object(line,'$.ln') lng,
get_json_object(line,'$.la') lat,
get_json_object(line,'$.entry') entry,
get_json_object(line,'$.open_ad_type') open_ad_type,
get_json_object(line,'$.action') action,
get_json_object(line,'$.loading_time') loading_time,
get_json_object(line,'$.detail') detail,
get_json_object(line,'$.extend1') extend1
from "$APP".ods_start_log
where dt='$do_date';
"
$hive -e "$sql"

2)增加脚本执行权限

chmod 770 ods_to_dwd_log.sh 3)脚本使用
ods_to_dwd_log.sh 2020-03-11 4)查询导入结果
select * from dwd_start_log where dt='2020-03-11' limit 2;

1.2 DWD 层(用户行为事件表数据解析)




1.2.1 创建基础明细表

明细表用于存储 ODS 层原始表转换过来的明细数据

1)创建事件日志基础明细表

drop table if exists dwd_base_event_log;
CREATE EXTERNAL TABLE dwd_base_event_log(
  `mid_id` string,
  `user_id` string,
  `version_code` string,
  `version_name` string,
  `lang` string,
  `source` string,
  `os` string,
  `area` string,
  `model` string,
  `brand` string,
  `sdk_version` string,
  `gmail` string,
  `height_width` string,
  `app_time` string,
  `network` string,
  `lng` string,
  `lat` string,
  `event_name` string,
  `event_json` string,
  `server_time` string)
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_base_event_log/'
TBLPROPERTIES('parquet.compression'='lzo');

2)说明:其中 event_name 和 event_json 用来对应事件名和整个事件。这个地方将原始日志1 对多的形式拆分出来了。操作的时候我们需要将原始日志展平,需要用到 UDF 和 UDTF

1.2.2 自定义 UDF 函数(解析公共字段)

UDF 函数特点:一行进一行出。简称,一进一出


1)创建一个 maven 工程:hivefunction 2)创建包名:com.zsy.udf
3)在 pom.xml 文件中添加如下内容

<properties>
        <hive.version>2.3.0</hive.version>
</properties>

<repositories>
        <repository>
                <id>spring-plugin</id>
                <url>https://repo.spring.io/plugins-release/</url>
        </repository>
</repositories>

<dependencies>
        <!--添加 hive 依赖-->
        <dependency>
                <groupId>org.apache.hive</groupId>
                <artifactId>hive-exec</artifactId>
                <version>${hive.version}</version>
        </dependency>
</dependencies>

<build>
        <plugins>
                <plugin>
                        <artifactId>maven-compiler-plugin</artifactId>
                        <version>2.3.2</version>
                        <configuration>
                                <source>1.8</source>
                                <target>1.8</target>
                        </configuration>
                </plugin>
                <plugin>
                        <artifactId>maven-assembly-plugin</artifactId>
                        <configuration>
                                <descriptorRefs>
                                        <descriptorRef>jar-with-dependencies</descriptorRef>
                                </descriptorRefs>
                        </configuration>
                        <executions>
                                <execution>
                                        <id>make-assembly</id>
                                        <phase>package</phase>
                                        <goals>
                                                <goal>single</goal>
                                        </goals>
                                </execution>
                        </executions>
                </plugin>
        </plugins>
</build>

注意 1:如果 hive 的 jar 包下载失败,可以将如下参数配置添加到 idea 中

-Dmaven.wagon.http.ssl.insecure=true -Dmaven.wagon.http.ssl.allowall=true
-Dmaven.wagon.http.ssl.ignore.validity.dates=true




详情请点击博客&#128073;:maven下载依赖时候忽略SSL证书校验
注意 2:打包时如果出现如下错误,说明 idea 内存溢出

Exception in thread "main" java.lang.StackOverflowError

解决办法:把 -Xss4m 添加到下图位置


4)UDF 用于解析公共字段

package com.zsy.udf;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.json.JSONObject;

public class BaseFieldUDF extends UDF {

    public String evaluate(String line,String key){
        // 1.切分数据
        String[] log = line.split("\\|");

        String result = "";

        // 2.校验
        if(log.length != 2 || StringUtils.isBlank(log[1])){
            return result;
        }

        // 3.解析数据获取json对象
        JSONObject json = new JSONObject(log[1].trim());

        // 4.根据传入的key获取对应的值
        if("st".equals(key)){
            result = log[0].trim();
        }else if("et".equals(key)){
            if(json.has("et")){
                result = json.getString("et");
            }
        }else{
            JSONObject cm = json.getJSONObject("cm");
            if(cm.has(key)){
                result = cm.getString(key);
            }
        }
        return result;
    }

    /**
     * 测试
     */
//    public static void main(String[] args) {
//        String line = "1583776132686|{"cm":{"ln":"-42.8","sv":"V2.3.9","os":"8.1.7","g":"X470IP70@gmail.com","mid":"0","nw":"4G","l":"en","vc":"13","hw":"1080*1920","ar":"MX","uid":"0","t":"1583758268106","la":"-31.3","md":"sumsung-18","vn":"1.1.1","ba":"Sumsung","sr":"M"},"ap":"app","et":[{"ett":"1583685512624","en":"display","kv":{"goodsid":"0","action":"2","extend1":"2","place":"1","category":"17"}},{"ett":"1583769686402","en":"newsdetail","kv":{"entry":"3","goodsid":"1","news_staytime":"16","loading_time":"0","action":"4","showtype":"5","category":"97","type1":""}},{"ett":"1583709065211","en":"ad","kv":{"activityId":"1","displayMills":"58537","entry":"1","action":"3","contentType":"0"}},{"ett":"1583693966746","en":"active_background","kv":{"active_source":"3"}},{"ett":"1583734521683","en":"error","kv":{"errorDetail":"java.lang.NullPointerException\\\\n    at cn.lift.appIn.web.AbstractBaseController.validInbound(AbstractBaseController.java:72)\\\\n at cn.lift.dfdf.web.AbstractBaseController.validInbound","errorBrief":"at cn.lift.dfdf.web.AbstractBaseController.validInbound(AbstractBaseController.java:72)"}},{"ett":"1583755388633","en":"praise","kv":{"target_id":0,"id":1,"type":3,"add_time":"1583713812739","userid":4}}]}";
//        String result = new BaseFieldUDF().evaluate(line, "st");
//        System.out.println(result);
//    }
}

1.2.3 自定义 UDTF 函数(解析事件字段)

UDTF 函数特点:多行进多行出。 简称,多进多出。


1)创建包名:com.zsy.udtf
2)在 com.zsy.udtf 包下创建类名:EventJsonUDTF
3)用于展开业务字段

package com.zsy.udtf;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.json.JSONArray;
import org.json.JSONException;

import java.util.ArrayList;
import java.util.List;

public class EventJsonUDTF extends GenericUDTF {

    @Override
    public StructObjectInspector initialize(StructObjectInspector argOIs) throws UDFArgumentException {
        // 定义UDTF返回值类型和名称
        List<String> fieldName = new ArrayList<>();
        List<ObjectInspector> fieldType = new ArrayList<>();
        fieldName.add("event_name");
        fieldName.add("event_json");
        fieldType.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
        fieldType.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
        return ObjectInspectorFactory.getStandardStructObjectInspector(fieldName, fieldType);
    }

    @Override
    public void process(Object[] objects) throws HiveException {
        // 1.获取传入的数据,传入的是Json array =》 UDF传入et
        String input = objects[0].toString();

        // 2.校验
        if (StringUtils.isBlank(input)) {
            return;
        } else {
            JSONArray ja = new JSONArray(input);
            if (ja == null) {
                return;
            }
            // 循环遍历array当中的每一个元素,封装成 事件名称和事件内容
            for (int i = 0; i < ja.length(); i++) {
                String[] result = new String[2];
                try {
                    result[0] = ja.getJSONObject(i).getString("en");
                    result[1] = ja.getString(i);
                } catch (JSONException ex) {
                    continue;
                }
                // 写出数据
                forward(result);
            }
        }
    }

    @Override
    public void close() throws HiveException {

    }
}

4)打包,上传到HDFS的 /user/hive/jars

hdfs dfs -mkdir /user/hive/jars 

hdfs dfs -put ./hivefunction-1.0-SNAPSHOT.jar /user/hive/jars

注意:如果修改了自定义函数重新生成 jar 包怎么处理?只需要替换 HDFS 路径上的旧
jar 包,然后重启 Hive 客户端即可

1.2.4 解析事件日志基础明细表

1)解析事件日志基础明细表

insert overwrite table dwd_base_event_log partition(dt='2020-03-10')
select
base_analizer(line,'mid') as mid_id,
base_analizer(line,'uid') as user_id,
base_analizer(line,'vc') as version_code,
base_analizer(line,'vn') as version_name,
base_analizer(line,'l') as lang,
base_analizer(line,'sr') as source,
base_analizer(line,'os') as os,
base_analizer(line,'ar') as area,
base_analizer(line,'md') as model,
base_analizer(line,'ba') as brand,
base_analizer(line,'sv') as sdk_version,
base_analizer(line,'g') as gmail,
base_analizer(line,'hw') as height_width,
base_analizer(line,'t') as app_time,
base_analizer(line,'nw') as network,
base_analizer(line,'ln') as lng,
base_analizer(line,'la') as lat,
event_name,
event_json,
base_analizer(line,'st') as server_time
from ods_event_log lateral view flat_analizer(base_analizer(line,'et')) tmp_flat as
event_name,event_json
where dt='2020-03-10' and base_analizer(line,'et')<>'';

2)测试
select * from dwd_base_event_log where dt='2020-03-10' limit 2;


1.2.5 DWD 层数据解析脚本

1)vim ods_to_dwd_base_log.sh
在脚本中编写如下内容

#!/bin/bash
# 定义变量方便修改
APP=gmall
hive=/opt/modules/hive/bin/hive
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
use gmall;
insert overwrite table "$APP".dwd_base_event_log partition(dt='$do_date')
select
base_analizer(line,'mid') as mid_id,
base_analizer(line,'uid') as user_id,
base_analizer(line,'vc') as version_code,
base_analizer(line,'vn') as version_name,
base_analizer(line,'l') as lang,
base_analizer(line,'sr') as source,
base_analizer(line,'os') as os,
base_analizer(line,'ar') as area,
base_analizer(line,'md') as model,
base_analizer(line,'ba') as brand,
base_analizer(line,'sv') as sdk_version,
base_analizer(line,'g') as gmail,
base_analizer(line,'hw') as height_width,
base_analizer(line,'t') as app_time,
base_analizer(line,'nw') as network,
base_analizer(line,'ln') as lng,
base_analizer(line,'la') as lat,
event_name,
event_json,
base_analizer(line,'st') as server_time
from "$APP".ods_event_log lateral view flat_analizer(base_analizer(line,'et')) tem_flat as
event_name,event_json
where dt='$do_date' and base_analizer(line,'et')<>''; "
$hive -e "$sql"

注意:使用自定义函数时,需要在执行脚本前,增加上要使用的库。例如:use gmall;
2)增加脚本执行权限

chmod 770 ods_to_dwd_base_log.sh

3)脚本使用

ods_to_dwd_base_log.sh 2020-03-11

4)查询导入结果

select * from dwd_base_event_log where dt='2020-03-11' limit 2;

1.3 DWD 层(用户行为事件表获取)
<ignore_js_op style="overflow-wrap: break-word; color: rgb(68, 68, 68); font-family: "Microsoft Yahei", tahoma, arial, "Hiragino Sans GB", 宋体, sans-serif;">

1.3.1 商品点击表
<ignore_js_op style="overflow-wrap: break-word; color: rgb(68, 68, 68); font-family: "Microsoft Yahei", tahoma, arial, "Hiragino Sans GB", 宋体, sans-serif;">

1)建表语句

 

drop table if exists dwd_display_log;
CREATE EXTERNAL TABLE dwd_display_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`action` string,
`goodsid` string,
`place` string,
`extend1` string,
`category` string,
`server_time` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_display_log/'
TBLPROPERTIES('parquet.compression'='lzo');

2)导入数据

insert overwrite table dwd_display_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.goodsid') goodsid,
get_json_object(event_json,'$.kv.place') place,
get_json_object(event_json,'$.kv.extend1') extend1,
get_json_object(event_json,'$.kv.category') category,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='display';

3)测试

select * from dwd_display_log where dt='2020-03-10' limit 2;

1.3.2 商品详情页表

1)建表语句

drop table if exists dwd_newsdetail_log;
CREATE EXTERNAL TABLE dwd_newsdetail_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`entry` string,
`action` string,
`goodsid` string,
`showtype` string,
`news_staytime` string,
`loading_time` string,
`type1` string,
`category` string,
`server_time` string)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_newsdetail_log/'
TBLPROPERTIES('parquet.compression'='lzo');

2)导入数据

insert overwrite table dwd_newsdetail_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.entry') entry,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.goodsid') goodsid,
get_json_object(event_json,'$.kv.showtype') showtype,
get_json_object(event_json,'$.kv.news_staytime') news_staytime,
get_json_object(event_json,'$.kv.loading_time') loading_time,
get_json_object(event_json,'$.kv.type1') type1,
get_json_object(event_json,'$.kv.category') category,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='newsdetail';

3)测试

select * from dwd_newsdetail_log where dt='2020-03-10' limit 2;

1.3.3 商品列表页表
1)建表语句

drop table if exists dwd_loading_log;
CREATE EXTERNAL TABLE dwd_loading_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`action` string,
`loading_time` string,
`loading_way` string,
`extend1` string,
`extend2` string,
`type` string,
`type1` string,
`server_time` string)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_loading_log/'
TBLPROPERTIES('parquet.compression'='lzo');

2)导入数据

insert overwrite table dwd_loading_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.loading_time') loading_time,
get_json_object(event_json,'$.kv.loading_way') loading_way,
get_json_object(event_json,'$.kv.extend1') extend1,
get_json_object(event_json,'$.kv.extend2') extend2,
get_json_object(event_json,'$.kv.type') type,
get_json_object(event_json,'$.kv.type1') type1,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='loading';

3)测试

hive (gmall)> select * from dwd_loading_log where dt='2020-03-10' limit 2;

1.3.4 广告表

1)建表语句

drop table if exists dwd_ad_log;
CREATE EXTERNAL TABLE dwd_ad_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`entry` string,
`action` string,
`contentType` string,
`displayMills` string,
`itemId` string,
`activityId` string,
`server_time` string)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_ad_log/'
TBLPROPERTIES('parquet.compression'='lzo');

2)导入数据

insert overwrite table dwd_ad_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.entry') entry,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.contentType') contentType,
get_json_object(event_json,'$.kv.displayMills') displayMills,
get_json_object(event_json,'$.kv.itemId') itemId,
get_json_object(event_json,'$.kv.activityId') activityId,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='ad';

3)测试

select * from dwd_ad_log where dt='2020-03-10' limit 2;

1.3.5 消息通知表

1)建表语句

drop table if exists dwd_notification_log;
CREATE EXTERNAL TABLE dwd_notification_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`action` string,
`noti_type` string,
`ap_time` string,
`content` string,
`server_time` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_notification_log/'
TBLPROPERTIES('parquet.compression'='lzo');

2)导入数据

insert overwrite table dwd_notification_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.noti_type') noti_type,
get_json_object(event_json,'$.kv.ap_time') ap_time,
get_json_object(event_json,'$.kv.content') content,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='notification';

3)测试

select * from dwd_notification_log where dt='2020-03-10' limit 2;

1.3.6 用户后台活跃表
1)建表语句

drop table if exists dwd_active_background_log;
CREATE EXTERNAL TABLE dwd_active_background_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`active_source` string,
`server_time` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_background_log/'
TBLPROPERTIES('parquet.compression'='lzo');

2)导入数据

insert overwrite table dwd_active_background_log PARTITION
(dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.active_source') active_source,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='active_background';

3)测试

select * from dwd_active_background_log where dt='2020-03-10' limit 2;

1.3.7 评论表

1)建表语句

drop table if exists dwd_comment_log;
CREATE EXTERNAL TABLE dwd_comment_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`comment_id` int,
`userid` int,
`p_comment_id` int,
`content` string,
`addtime` string,
`other_id` int,
`praise_count` int,
`reply_count` int,
`server_time` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_comment_log/'
TBLPROPERTIES('parquet.compression'='lzo');

2)导入数据

insert overwrite table dwd_comment_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.comment_id') comment_id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.p_comment_id') p_comment_id,
get_json_object(event_json,'$.kv.content') content,
get_json_object(event_json,'$.kv.addtime') addtime,
get_json_object(event_json,'$.kv.other_id') other_id,
get_json_object(event_json,'$.kv.praise_count') praise_count,
get_json_object(event_json,'$.kv.reply_count') reply_count,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='comment';

3)测试

 select * from dwd_comment_log where dt='2020-03-10' limit 2;

1.3.8 收藏表

1)建表语句

drop table if exists dwd_favorites_log;
CREATE EXTERNAL TABLE dwd_favorites_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`id` int,
`course_id` int,
`userid` int,
`add_time` string,
`server_time` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_favorites_log/'
TBLPROPERTIES('parquet.compression'='lzo');

2)导入数据

insert overwrite table dwd_favorites_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.id') id,
get_json_object(event_json,'$.kv.course_id') course_id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.add_time') add_time,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='favorites';

3)测试

select * from dwd_favorites_log where dt='2020-03-10' limit 2;

1.3.9 点赞表

1)建表语句

drop table if exists dwd_praise_log;
CREATE EXTERNAL TABLE dwd_praise_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`id` string,
`userid` string,
`target_id` string,
`type` string,
`add_time` string,
`server_time` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_praise_log/'
TBLPROPERTIES('parquet.compression'='lzo');

2)导入数据

insert overwrite table dwd_praise_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.id') id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.target_id') target_id,
get_json_object(event_json,'$.kv.type') type,
get_json_object(event_json,'$.kv.add_time') add_time,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='praise';

3)测试

select * from dwd_praise_log where dt='2020-03-10' limit 2;

1.3.10 错误日志表
1)建表语句

drop table if exists dwd_error_log;
CREATE EXTERNAL TABLE dwd_error_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`errorBrief` string,
`errorDetail` string,
`server_time` string)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_error_log/'
TBLPROPERTIES('parquet.compression'='lzo');

2)导入数据

insert overwrite table dwd_error_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.errorBrief') errorBrief,
get_json_object(event_json,'$.kv.errorDetail') errorDetail,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='error';

3)测试

select * from dwd_error_log where dt='2020-03-10' limit 2;

1.3.11 DWD 层事件表加载数据脚本

1) vim ods_to_dwd_event_log.sh
在脚本中编写如下内容

#!/bin/bash
# 定义变量方便修改
APP=gmall
hive=/opt/modules/hive/bin/hive
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table "$APP".dwd_display_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.goodsid') goodsid,
get_json_object(event_json,'$.kv.place') place,
get_json_object(event_json,'$.kv.extend1') extend1,
get_json_object(event_json,'$.kv.category') category,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='display';


insert overwrite table "$APP".dwd_newsdetail_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.entry') entry,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.goodsid') goodsid,
get_json_object(event_json,'$.kv.showtype') showtype,
get_json_object(event_json,'$.kv.news_staytime')
news_staytime,
get_json_object(event_json,'$.kv.loading_time')
loading_time,
get_json_object(event_json,'$.kv.type1') type1,
get_json_object(event_json,'$.kv.category') category,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='newsdetail';


insert overwrite table "$APP".dwd_loading_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.loading_time')
loading_time,
get_json_object(event_json,'$.kv.loading_way') loading_way,
get_json_object(event_json,'$.kv.extend1') extend1,
get_json_object(event_json,'$.kv.extend2') extend2,
get_json_object(event_json,'$.kv.type') type,
get_json_object(event_json,'$.kv.type1') type1,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='loading';


insert overwrite table "$APP".dwd_ad_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.entry') entry,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.contentType') contentType,
get_json_object(event_json,'$.kv.displayMills')
displayMills,
get_json_object(event_json,'$.kv.itemId') itemId,
get_json_object(event_json,'$.kv.activityId') activityId,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='ad';


insert overwrite table "$APP".dwd_notification_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.noti_type') noti_type,
get_json_object(event_json,'$.kv.ap_time') ap_time,
get_json_object(event_json,'$.kv.content') content,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='notification';


insert overwrite table "$APP".dwd_active_background_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.active_source')
active_source,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='active_background';


insert overwrite table "$APP".dwd_comment_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.comment_id') comment_id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.p_comment_id')
p_comment_id,
get_json_object(event_json,'$.kv.content') content,
get_json_object(event_json,'$.kv.addtime') addtime,
get_json_object(event_json,'$.kv.other_id') other_id,
get_json_object(event_json,'$.kv.praise_count')
praise_count,
get_json_object(event_json,'$.kv.reply_count') reply_count,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='comment';


insert overwrite table "$APP".dwd_favorites_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.id') id,
get_json_object(event_json,'$.kv.course_id') course_id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.add_time') add_time,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='favorites';


insert overwrite table "$APP".dwd_praise_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.id') id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.target_id') target_id,
get_json_object(event_json,'$.kv.type') type,
get_json_object(event_json,'$.kv.add_time') add_time,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='praise';


insert overwrite table "$APP".dwd_error_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.errorBrief') errorBrief,
get_json_object(event_json,'$.kv.errorDetail') errorDetail,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='error';
"

$hive -e "$sql"

2)增加脚本执行权限

chmod 770 ods_to_dwd_event_log.sh

3)脚本使用

ods_to_dwd_event_log.sh 2020-03-11

4)查询导入结果

select * from dwd_comment_log where dt='2020-03-11' limit 2;

结束语
本章对ODS层的用户行为数据进行了解析,构建并将数据导入到了DWD层,下章将会对ODS层的业务数据解析,导入DWD层!

注意:如果修改了自定义函数重新生成 jar 包怎么处理?只需要替换 HDFS 路径上的旧
jar 包,然后重启 Hive 客户端即可

1.2.4 解析事件日志基础明细表

1)解析事件日志基础明细表

 posted on 2020-09-23 14:07  大码王  阅读(819)  评论(0编辑  收藏  举报
复制代码