……

机器学习算法及代码实现–决策树

1、决策树

决策树算法的核心在于决策树的构建,每次选择让整体数据香农熵(描述数据的混乱程度)减小最多的特征,使用其特征值对数据进行划分,每次消耗一个特征,不断迭代分类,直到所有特征消耗完(选择剩下数据中出现次数最多的类别作为这堆数据的类别),或剩下的数据全为同一类别,不必继续划分,至此决策树构建完成,之后我们依照这颗决策树对新进数据进行分类。

这里写图片描述

2、信息熵

一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者是我们一无所知的事情,需要了解大量信息==>信息量的度量就等于不确定性的多少
例子:猜世界杯冠军,假如一无所知,猜多少次?实际中每个队夺冠的几率不是相等的,如果我们对其有足够了解,是否猜中的概率会增大?
信息熵用比特(bit)来衡量信息的多少,变量的不确定性越大,熵也就越大。
公式:
这里写图片描述

3、决策树算法(ID3)

我们以一个例子来讲述决策树的算法(判断该用户是否买电脑)
这里写图片描述
每次选择信息获取量最大的特征对其进行划分
Gain(A) = Info(D) - Infor_A(D) (原来的信息熵减去用A之后的信息熵=》获取的信息量)

计算过程:
这里写图片描述

类似,Gain(income) = 0.029, Gain(student) = 0.151, Gain(credit_rating)=0.048
所以,选择age作为第一个根节点
分类结果:
这里写图片描述

算法注意点:
1)根节点开始,样本在同一个类则为树叶,标记类号
2)选择信息获取量最大的进行划分
3)属性为离散值连续则必须离散化
4)根据属性划分分支,分支的子节点不用再考虑该属性
停止条件
1)所有节点属于同一类
2)没有可划分的属性了: 以当中的大多数来确定类
3)属性下没节点:以父节点中的多少类作为类

4、其它决策树算法

C4.5、CART

5、对于过拟合的处理方法

先剪枝:一定深度不再分
后剪枝:先生成,后按规则减

6、优缺点

优点:直观、易理解、小规模数据有效
缺点:处理连续变量不好,值域不好划分
类别多时,错误增加快
可规模性一般,大量数据时复杂性大

算法实现

#-*- coding: utf-8 -*-
from sklearn.feature_extraction import DictVectorizer
import csv
from sklearn import preprocessing
from sklearn import tree
from sklearn.externals.six import StringIO

data = open('jueceshu.csv', 'rb')
reader = csv.reader(data)
headers = reader.next()
print headers

featureList = []  # 特征集
labelList = []  # 标签集
for row in reader:
    # 最后一列是标签,构造标签集
    labelList.append(row[len(row)-1])
    # 构造特征集
    rowDict = {}
    for i in range(1, len(row)-1):
        # header里面是属性名,用来作键值
        rowDict[headers[i]] = row[i]
    featureList.append(rowDict)

print featureList

vec = DictVectorizer()
# 将特征转化为向量
dummyX = vec.fit_transform(featureList).toarray()

print ('dummyX:'+str(dummyX))
# 输出向量中每一项的含义
print vec.get_feature_names()

print 'labelList:' + str(labelList)

# 将标签变成列向量
lb = preprocessing.LabelBinarizer()
dummyY = lb.fit_transform(labelList)
print 'dummyY:' + str(dummyY)

# 利用tree中的分类器来创建决策树
clf = tree.DecisionTreeClassifier(criterion='entropy')  # 用ID3的算法  信息熵
clf = clf.fit(dummyX, dummyY)
print 'clf:' + str(clf)

# 画决策树
with open('jueceshu.dot', 'w') as f:
    # 把feature_name返回
    f = tree.export_graphviz(clf,feature_names=vec.get_feature_names(), out_file=f)

oneRowX = dummyX[0, :]
print 'oneRowX:' + str(oneRowX)

# 构造新的情况,并预测
newRowX = oneRowX
newRowX[0] = 1
newRowX[2] = 0
print 'newRowX:' + str(newRowX)

# 用模型预测
predictedY = clf.predict(newRowX)
print 'predictedY:' + str(predictedY)

 



 
 posted on 2020-05-18 17:18  大码王  阅读(1156)  评论(1编辑  收藏  举报
复制代码