ZOJ 1074 最大子矩阵和

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.  As an example, the maximal sub-rectangle of the array: 
0 -2 -7 0  9 2 -6 2  -4 1 -4 1  -1 8 0 -2  is in the lower left corner: 
9 2  -4 1  -1 8  and has a sum of 15. 

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0
9 2 -6 2 -4 1 -4 1
-1 8 0 -2

Sample Output

15




题意:求最大的子矩阵的和


解题思路:通过循环,用b[k]数组储存每列的和,例如当循环到第2行时,b[0]储存的就是5。 5是怎么来的呢?它是0+9+(-4)=5。
                                 b[1]储存的就是1。 -2+2+1=1

这样求出每列的和然后同时找b[k]序列的最大子段和,不断更新最大值,循环完之后,就可以找出最大值了.....



也许这样比较抽象,举个栗子:(这里就不用N行N列的做例子了.....)

2维数组:     
         1 2 3
        -5 6 7
    

我们先求
          
          第0行   b数组 1 2 3

               最大子段和:1+2+3=6  这里可以理解为  这是 1 2 3  这个子矩阵
          
          第1行
                b数组 -4 8 10

               最大子段和:8+10=18  这里就是 2 3
                                       6 7  这个子矩阵

                所以答案就是18


怎么说,思想应该是通过求每列的和,使得它变成一个求最大字段和的问题.........





代码如下:(去掉注释,也许会对理解思路有帮助....)


 1 #include<stdio.h>
 2 #include <limits>
 3 #include<string.h>
 4 using namespace std;
 5 int a[105][105],b[105];
 6 int n,cursum=-130,max=numeric_limits<int>::min();
 7 
 8 int curmaxsum()
 9 {
10     int sum=0,cursum=-130;
11     for(int i=0; i<n; i++)
12     {
13         sum+=b[i];
14         if(sum<0)
15             sum=b[i];
16         if(sum>cursum)
17             cursum=sum;
18     }
19     return cursum;
20 }
21 
22 int maxsub()
23 {
24     for(int i=0; i<n; i++)
25     {
26         memset(b,0,sizeof(b));
27         for(int j=i; j<n; j++)
28         {
29             //printf("\nj=%d\n",j);
30             for(int k=0; k<n; k++)
31             {
32                 b[k]+=a[j][k];
33             }
34             /*for(int k=0; k<n-1; k++)
35                 printf("%d ",b[k]);
36             printf("%d\n",b[n-1]);*/
37 
38             curmaxsum();
39             //printf("cursum=%d\n",cursum);
40             if(cursum>max)
41                 max=cursum;
42            // printf("max=%d\n",max);
43         }
44     }
45     return max;
46 }
47 
48 int main()
49 {
50     while(scanf("%d",&n)==1)
51     {
52         for(int i=0; i<n; i++)
53             for(int j=0; j<n; j++)
54                 scanf("%d",&a[i][j]);
55        // printf("******************************\n\n");
56         maxsub();
57         printf("%d\n",max);
58     }
59     return 0;
60 }

 


posted @ 2015-08-13 17:02  果冻0_0  阅读(280)  评论(0编辑  收藏  举报