POJ3356 AGTC

Description

Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:

 

  • Deletion: a letter in x is missing in y at a corresponding position.
  • Insertion: a letter in y is missing in x at a corresponding position.
  • Change: letters at corresponding positions are distinct

 

Certainly, we would like to minimize the number of all possible operations.

Illustration

 

A G T A A G T * A G G C  | | |       |   |   | |
 A G T * C * T G A C G C

 

Deletion: * in the bottom line  Insertion: * in the top line  Change: when the letters at the top and bottom are distinct

This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

 

A  G  T  A  A  G  T  A  G  G  C  |  |  |        |     |     |  |
 A  G  T  C  T  G  *  A  C  G  C

 

and 4 moves would be required (3 changes and 1 deletion).

In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥m.

Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

Write a program that would minimize the number of possible operations to transform any string x into a string y.

Input

The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

Output

An integer representing the minimum number of possible operations to transform any string x into a string y.

Sample Input

10 AGTCTGACGC
11 AGTAAGTAGGC

Sample Output

4



题意: 给出两个字符串x 与 y,其中x的长度为n,y的长度为m,并且m>=n
    然后y可以经过删除一个字母,添加一个字母,转换一个字母,三种操作得到x
    问最少可以经过多少次操作


解题思路:(转至 贰圣的博客

    我们设dp[i][j]的意义为y取前i个字母和x取前j个字母的最少操作次数


那么可以得到dp[0][i] = i和dp[i][0]=i,因为某一字符串为空的,要得到另一个i长度字符串,必须经过i次插入操作。 而dp[1][1],有3种操作            1.转换 ,将str1[0]和str2[0]判断,如果相等,则dp[1][1]=0,否则dp[1][1]=1

2.删除,因为,目的串比源串小,所以删除源串一个字符, 也就是必须有一次操作,删除str1[0]后,那么dp[1][1]就是dp[0][1]的值+1

3.添加,在目的串添加一个字符,即源串不变,但是目的串减1,和源串去匹配,即dp[1][0] + 1


这样dp[i][j]可以得到3中操作的最小值

dp[i-1][j-1]+(str1[i]==str2[j]?0:1)

dp[i-1][j]+1

dp[i][j-1]+1

 

 

代码如下:

 

 

 1 #include <stdio.h>
 2 #include <string.h>
 3 char x[10050],y[10050];
 4 int d[10050][10050];
 5 int min(int a,int b)
 6 {
 7     return a<b?a:b;
 8 }
 9 int main()
10 {
11     int n,m;
12     while(scanf("%d%s",&n,&x)==2)
13     {
14         scanf("%d%s",&m,&y);
15         d[0][0];
16         for(int i=1;i<=n;i++)
17             d[i][0]=i;
18         for(int i=1;i<=m;i++)
19             d[0][i]=i;
20         for(int i=1;i<=n;i++)
21             for(int j=1;j<=m;j++)
22         {
23             int tmp=d[i-1][j-1]+(x[i-1]==y[j-1]?0:1);
24             tmp=min(d[i][j-1]+1,tmp);
25             d[i][j]=min(d[i-1][j]+1,tmp);
26         }
27         printf("%d\n",d[n][m]);
28     }
29     return 0;
30 }

 






posted @ 2015-08-12 09:01  果冻0_0  阅读(130)  评论(0编辑  收藏  举报