POJ3356 AGTC
Description
Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:
- Deletion: a letter in x is missing in y at a corresponding position.
- Insertion: a letter in y is missing in x at a corresponding position.
- Change: letters at corresponding positions are distinct
Certainly, we would like to minimize the number of all possible operations.
Illustration
A G T A A G T * A G G C | | | | | | | A G T * C * T G A C G CDeletion: * in the bottom line Insertion: * in the top line Change: when the letters at the top and bottom are distinct
This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like
A G T A A G T A G G C | | | | | | | A G T C T G * A C G C
and 4 moves would be required (3 changes and 1 deletion).
In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥m.
Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.
Write a program that would minimize the number of possible operations to transform any string x into a string y.
Input
The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.
Output
An integer representing the minimum number of possible operations to transform any string x into a string y.
Sample Input
10 AGTCTGACGC 11 AGTAAGTAGGC
Sample Output
4
题意: 给出两个字符串x 与 y,其中x的长度为n,y的长度为m,并且m>=n
然后y可以经过删除一个字母,添加一个字母,转换一个字母,三种操作得到x
问最少可以经过多少次操作
解题思路:(转至 贰圣的博客)
我们设dp[i][j]的意义为y取前i个字母和x取前j个字母的最少操作次数
那么可以得到dp[0][i] = i和dp[i][0]=i,因为某一字符串为空的,要得到另一个i长度字符串,必须经过i次插入操作。 而dp[1][1],有3种操作 1.转换 ,将str1[0]和str2[0]判断,如果相等,则dp[1][1]=0,否则dp[1][1]=1
2.删除,因为,目的串比源串小,所以删除源串一个字符, 也就是必须有一次操作,删除str1[0]后,那么dp[1][1]就是dp[0][1]的值+1
3.添加,在目的串添加一个字符,即源串不变,但是目的串减1,和源串去匹配,即dp[1][0] + 1
这样dp[i][j]可以得到3中操作的最小值
dp[i-1][j-1]+(str1[i]==str2[j]?0:1)
dp[i-1][j]+1
dp[i][j-1]+1
代码如下:
1 #include <stdio.h> 2 #include <string.h> 3 char x[10050],y[10050]; 4 int d[10050][10050]; 5 int min(int a,int b) 6 { 7 return a<b?a:b; 8 } 9 int main() 10 { 11 int n,m; 12 while(scanf("%d%s",&n,&x)==2) 13 { 14 scanf("%d%s",&m,&y); 15 d[0][0]; 16 for(int i=1;i<=n;i++) 17 d[i][0]=i; 18 for(int i=1;i<=m;i++) 19 d[0][i]=i; 20 for(int i=1;i<=n;i++) 21 for(int j=1;j<=m;j++) 22 { 23 int tmp=d[i-1][j-1]+(x[i-1]==y[j-1]?0:1); 24 tmp=min(d[i][j-1]+1,tmp); 25 d[i][j]=min(d[i-1][j]+1,tmp); 26 } 27 printf("%d\n",d[n][m]); 28 } 29 return 0; 30 }