kafka详解

1.Kafka概述

1.1kafka定义

  • Kafka传统定义:Kafka是一个分布式基于发布/订阅模式的消息队列(Message Queue),主要应用于大数据实时处理领域。使用Scala语言编写,是Apache的顶级项目。

   发布/订阅:消息的发布者不会将消息直接发送给特定的订阅者,而是将发布的消息分为不同的类别,订阅者只接收感兴趣的信息。

  • Kafka最新定义:Kafka是一个开源的分布式事件流平台(Event Streaming Platform),主要应用于高性能数据管道、流分析、数据集成和关键任务应用

1.2 消息队列 

目前企业中比较常见的消息队列产品主要有Kafka、ActiveMQ、RabbitMQ、RocketMQ等。在大数据场景主要采用Kafka作为消息队列。在JavaEE开发中主要采用ActiveMQ、RabbitMQ、RocketMQ。

  • ActiveMQ:历史悠久,实现了JMS(Java Message Service)规范,支持性较好,性能相对不高。

  • RabbitMQ:可靠性高、安全。

  • RocketMQ:阿里开源的消息中间件,纯Java实现。

  • Kafka:分布式、高性能、跨语言。

1.2.1 传统消息队列的应用场景

传统的消息队列的主要应用场景包括:缓冲/消峰、解耦和异步通信

  • 缓冲/消峰:有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况

 

  • 解耦:允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

 

  • 异步通信:允许用户把一个消息放入队列,但并不立即处理它,然后在需要的时候再去处理它们。

 

1.2.2 消息队列的两种模式

(1)点对点模式:消费者主动拉取数据,消息收到之后清除消息。

(2)发布/订阅模式

  1. 可以有多个topic主题

  2. 消费者消费数据之后,不删除数据

  3. 每个消费者相互独立,都可以消费到数据

 

1.3 Kafka基础架构

  1. Producer:消息生产者,就是向Kafka broker发消息的客户端。

  2. Consumer:消息消费者,向Kafka broker 获取消息的客户端。

  3. Consumer Group(CG):消费者组,由多个consumer组成。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费;消费者组之间互不影响,所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。

  4. Broker:一台Kafka服务器就是一个broker。一个集群由多个broker组成。一个broker可以容纳多个topic。

  5. Topic:可以理解为一个队列,生产者和消费者面向的都是一个topic。

  6. Partition为了实现扩展性一个非常大的topic可以分布到多个broker(即服务器)上一个topic可以分为多个partition,每个partition是一个有序的队列

  7. Replica:副本。一个 topic 的每个分区都有若干个副本,一个 Leader 和若干个 Follower

  8. Leader:每个分区多个副本的“主”生产者发送数据的对象,以及消费者消费数据的对象都是Leader

  9. Follower:每个分区多个副本中的“从”,实时从Leader中同步数据,保持和Leader数据的同步。Leader发生故障时,某个Follower会成为新的Leader。

 

1.为方便扩展,并提高吞吐量,一个topic分为多个partition。

2.配合分区的设计,提出消费者组的概念,组内每个消费者并行消费。

3.为提高可用性,为每个partition增加若干副本,类似NameNodeHA。

4. ZK中记录谁是leader,Kafka2.8.0以后也可以配置不采用ZK。

 

2.Kafka安装与部署

(1)Kafka下载地址:https://kafka.apache.org/downloads.html,选择需要下载的版本,并将其上传到服务器上。

-rw-r--r-- 1 root root  41414555 10月  9 07:42 kafka_2.11-0.11.0.0.tgz

(2)将压缩包进行解压

tar -zxvf kafka_2.11-0.11.0.0.tgz

(3)修改解压之后的文件名

mv kafka_2.11-0.11.0.0 kafka

(4)进入到 config 目录下修改server.properties配置文件,本文搭建的是单节点kafka。

查看代码
# The id of the broker. This must be set to a unique integer for each broker.
# broker的全局唯一编号,不能重复,只能是数字
broker.id=0

############################# Socket Server Settings #############################

# The address the socket server listens on. It will get the value returned from 
# java.net.InetAddress.getCanonicalHostName() if not configured.
#   FORMAT:
#     listeners = listener_name://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092
listeners=PLAINTEXT://kafka1:9092

# Hostname and port the broker will advertise to producers and consumers. If not set, 
# it uses the value for "listeners" if configured.  Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
advertised.listeners=PLAINTEXT://8.110.110.110:9092

# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL

# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=3

# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=8

# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400

# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400

# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600


############################# Log Basics #############################

# A comma separated list of directories under which to store log files
log.dirs=../logs

# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1

# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1

############################# Internal Topic Settings  #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1

############################# Log Flush Policy #############################

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000

############################# Log Retention Policy #############################

# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.

# The minimum age of a log file to be eligible for deletion due to age
log.retention.hours=168

# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824

# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000

############################# Zookeeper #############################

# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=zookeeper1:2181

# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=18000


############################# Group Coordinator Settings #############################

# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0

#exclude.internal.topics=false,默认是true,表示不能消费系统主题。为了查看该系统主题数据,所以该参数修改为false。
exclude.internal.topics=false

(5)启动zookeeper

1.使用kafka内置的zk

[root@-9930 bin]# ls
connect-distributed.sh        kafka-console-consumer.sh    kafka-features.sh                    kafka-reassign-partitions.sh        kafka-topics.sh                  zookeeper-server-stop.sh
connect-mirror-maker.sh       kafka-console-producer.sh    kafka-leader-election.sh             kafka-replica-verification.sh       kafka-verifiable-consumer.sh     zookeeper-shell.sh
connect-standalone.sh         kafka-consumer-groups.sh     kafka-log-dirs.sh                    kafka-run-class.sh                  kafka-verifiable-producer.sh
kafka-acls.sh                 kafka-consumer-perf-test.sh  kafka-metadata-shell.sh              kafka-server-start.sh               trogdor.sh
kafka-broker-api-versions.sh  kafka-delegation-tokens.sh   kafka-mirror-maker.sh                kafka-server-stop.sh                windows
kafka-cluster.sh              kafka-delete-records.sh      kafka-preferred-replica-election.sh  kafka-storage.sh                    zookeeper-security-migration.sh
kafka-configs.sh              kafka-dump-log.sh            kafka-producer-perf-test.sh          kafka-streams-application-reset.sh  zookeeper-server-start.sh
[root@-9930 bin]# ./zookeeper-server-start.sh 
USAGE: ./zookeeper-server-start.sh [-daemon] zookeeper.properties
[root@-9930 bin]# ./zookeeper-server-start.sh ../config/zookeeper.properties

 2.使用外部zk(推荐)

  • 下载zookeeper,下载地址:https://zookeeper.apache.org/
  • 解压压缩包:apache-zookeeper-3.7.1-bin.tar.gz,并修改文件名字为 zookeeper
  • 修改配置文件zoo.cfg:dataDir=../data 数据存放的目录,以及监听的端口等、
[root@-9930 bin]# cat ../conf/zoo.cfg 
# The number of milliseconds of each tick
tickTime=2000
# the directory where the snapshot is stored.
# do not use /tmp for storage, /tmp here is just 
# example sakes.
dataDir=../data
# the port at which the clients will connect
clientPort=2181
  • 启动zookeeper
[root@-9930 bin]# ls
README.txt    zkCli.cmd  zkEnv.cmd  zkServer.cmd            zkServer.sh             zkSnapshotComparer.sh  zkSnapShotToolkit.sh  zkTxnLogToolkit.sh
zkCleanup.sh  zkCli.sh   zkEnv.sh   zkServer-initialize.sh  zkSnapshotComparer.cmd  zkSnapShotToolkit.cmd  zkTxnLogToolkit.cmd
[root@-9930 bin]# ./zkServer.sh start ../conf/zoo.cfg
ZooKeeper JMX enabled by default
Using config: ../conf/zoo.cfg
Starting zookeeper ... STARTED
[root@-9930 bin]# 

 (6)启动kafka,使用 jps 命令查看进程是否启动成功。

[root@-9930 bin]# ls
connect-distributed.sh        kafka-console-consumer.sh    kafka-features.sh                    kafka-reassign-partitions.sh        kafka-topics.sh                  zookeeper-server-stop.sh
connect-mirror-maker.sh       kafka-console-producer.sh    kafka-leader-election.sh             kafka-replica-verification.sh       kafka-verifiable-consumer.sh     zookeeper-shell.sh
connect-standalone.sh         kafka-consumer-groups.sh     kafka-log-dirs.sh                    kafka-run-class.sh                  kafka-verifiable-producer.sh
kafka-acls.sh                 kafka-consumer-perf-test.sh  kafka-metadata-shell.sh              kafka-server-start.sh               trogdor.sh
kafka-broker-api-versions.sh  kafka-delegation-tokens.sh   kafka-mirror-maker.sh                kafka-server-stop.sh                windows
kafka-cluster.sh              kafka-delete-records.sh      kafka-preferred-replica-election.sh  kafka-storage.sh                    zookeeper-security-migration.sh
kafka-configs.sh              kafka-dump-log.sh            kafka-producer-perf-test.sh          kafka-streams-application-reset.sh  zookeeper-server-start.sh
[root@-9930 bin]# ./kafka-server-start.sh -daemon ../config/server.properties 
[root@-9930 bin]# jps
7761 QuorumPeerMain
15286 Jps
15150 Kafka

 (7)创建Topic(主题),查看Topic,修改Topic分区数(只能增加partition个数,不能减少),删除Topic

[root@-9930 bin]# ./kafka-topics.sh --create --zookeeper zookeeper1:2181 --replication-factor 1 --partitions 3 --topic kafka-demo
Created topic kafka-demo.
[root@-9930 bin]# ./kafka-topics.sh --describe --zookeeper zookeeper1:2181 --topic kafka-demo
Topic: kafka-demo       TopicId: xjoO1e24Tm24JJMWUodD7w PartitionCount: 3       ReplicationFactor: 1    Configs: 
        Topic: kafka-demo       Partition: 0    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka-demo       Partition: 1    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka-demo       Partition: 2    Leader: 0       Replicas: 0     Isr: 0
# 修改Topic:只能增加partition个数,不能减少
[root@-9930 bin]# ./kafka-topics.sh --alter --zookeeper zookeeper1:2181  --topic kafka-demo --partitions 5
WARNING: If partitions are increased for a topic that has a key, the partition logic or ordering of the messages will be affected
Adding partitions succeeded!
[root@-9930 bin]# ./kafka-topics.sh --describe --zookeeper zookeeper1:2181 --topic kafka-demo
Topic: kafka-demo       TopicId: xjoO1e24Tm24JJMWUodD7w PartitionCount: 5       ReplicationFactor: 1    Configs: 
        Topic: kafka-demo       Partition: 0    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka-demo       Partition: 1    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka-demo       Partition: 2    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka-demo       Partition: 3    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka-demo       Partition: 4    Leader: 0       Replicas: 0     Isr: 0
[root@-9930 bin]# ./kafka-topics.sh --delete --zookeeper zookeeper1:2181 --topic kafka-demo
参数  描述 
--zookeeper 连接的zookeeper主机名称和端口号。 
--topic <String: topic>  操作的topic名称。
--create  创建主题。 
--delete 删除主题。
--alter 修改主题。
--list  查看所有主题。
-describe 查看主题详细描述。
--partitions <Integer: # of partitions> 设置分区数。
--replication-factor<Integer: replication factor> 设置分区副本。 

(8)启动生产者,并发送消息

[root@-9930 bin]# ./kafka-console-producer.sh --broker-list kafka1:9092 --topic kafka-demo
>hello
>is 
>kafka
>
参数  描述 
--broker-list 连接的Kafka Broker主机名称和端口号。 
--topic <String: topic>  操作的topic名称。

(9)启动消费者,并接收消息

[root@-9930 bin]# ./kafka-console-consumer.sh --bootstrap-server kafka1:9092 --topic kafka-demo --from-beginning
hello
is 
kafka
参数  描述 
--bootstrap-server <String: server toconnect to>  连接的Kafka Broker主机名称和端口号。 
--topic <String: topic>  操作的topic名称。
--from-beginning 从头开始消费。 
--group <String: consumer group id>   指定消费者组名称。 

 

3.Kafka生产者

3.1生产者消息发送流程

3.1.1发送原理

在消息发送的过程中,涉及到了两个线程——main线程和Sender线程。在main线程中创建了一个双端队列RecordAccumulator(默认32m)。main线程将消息发送给RecordAccumulator,Sender线程不断从RecordAccumulator中拉取消息发送到Kafka Broker。

main线程初始化:

sender线程初始化:

main线程发送数据到缓冲区:

sender线程发送数据:

3.1.2生产者参数列表

参数  描述 
bootstrap.servers  生产者连接集群所需的broker地址清单。例如kafka1:9092,kafka2:9092,kafka3:9092,可以设置1个或者多个,中间用逗号隔开。注意这里并非需要所有的broker地址,因为生产者从给定的broker里查找到其他broker信息。 
key.serializer和value.serializer 指定发送消息的key和value的序列化类型。一定要写全类名
buffer.memory RecordAccumulator缓冲区总大小,默认32m。
batch.size  缓冲区一批数据最大值,默认16k适当增加该值,可以提高吞吐量,但是如果该值设置太大,会导致数据传输延迟增加。
linger.ms 如果数据迟迟未达到batch.size,sender等待linger.time之后就会发送数据单位ms,默认值是0ms,表示没有延迟。生产环境建议该值大小为5-100ms之间。
acks 0:生产者发送过来的数据,不需要等数据落盘应答。 
1:生产者发送过来的数据,Leader收到数据后应答。 
-1(all):生产者发送过来的数据,Leader+和isr队列里面的所有节点收齐数据后应答默认值是-1,-1和all是等价的
max.in.flight.requests.per.connection  允许最多没有返回ack的次数默认为5开启幂等性要保证该值是 1-5的数字。
retries  当消息发送出现错误的时候,系统会重发消息。retries表示重试次数。默认是int最大值,2147483647。 如果设置了重试,还想保证消息的有序性,需要设置MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=1,否则在重试此失败消息的时候,其他的消息可能发送成功了。
retry.backoff.ms 两次重试之间的时间间隔,默认是100ms。
enable.idempotence 是否开启幂等性,默认true,开启幂等性
compression.type 生产者发送的所有数据的压缩方式。默认是none,也就是不压缩。  支持压缩类型:none、gzip、snappy、lz4和zstd。

 

3.2 Kafka消息发送API

3.2.1 普通异步发送

1. 引入依赖,IDEA中创建项目的时候可以直接勾选Spring for Apache Kafka,自动添加依赖。

<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
</dependency>

或者手动引入org.apache.kafka.kafka-clients 依赖,两者均可。

<!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients -->
<!--<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
    <version>3.0.0</version>
</dependency>-->

2. 创建自定义生产者 CustomerProducer

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

/**
 * @author huangdh
 * @version 1.0
 * @description:
 * @date 2022-11-05 16:22
 */
public class CustomProducer {

    public static void main(String[] args) {

        // 创建kafka生产者的配置对象
        Properties properties = new Properties();
        // 连接kafka
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"8.8.80.8:9092");
        // key value 序列化设置(必须)
        // org.apache.kafka.common.serialization.StringSerializer
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 创建kafka生产者对象
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        // 调用send方法,发送消息
        for (int i = 0; i < 500; i++) {
            kafkaProducer.send(new ProducerRecord<>("kafka-offset","learn kafka by yourself, 第" + i + "天"));
        }
        // 3.关闭资源
        kafkaProducer.close();
    }
}

3.2.2 带回调函数的异步/同步发送 

回调函数会在producer收到ack时调用,为异步调用,该方法有两个参数,分别是元数据信息(RecordMetadata)和异常信息(Exception),如果Exception为null,说明消息发送成功,如果Exception不为null,说明消息发送失败。

1. 创建自定义类:CustomProducerCallback


import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;
import java.util.concurrent.ExecutionException;

/**
 * @author huangdh
 * @version 1.0
 * @description:
 * @date 2022-11-09 13:49
 */
public class CustomProducerCallback {

    public static void main(String[] args) throws InterruptedException, ExecutionException {

        // 1. 创建kafka生产者的配置对象
        Properties properties = new Properties();

        // 2. 给kafka配置对象添加配置信息
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"8.8.8.8:9092");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 3. 创建kafka生产者对象
        KafkaProducer<String,String> kafkaProducer = new KafkaProducer<String, String>(properties);

        // 4. 调用send方法,发送消息
        for (int i = 0; i < 600; i++) {

            // 异步发送
            /*kafkaProducer.send(new ProducerRecord<>("kafka","learn kafka by yourself, 第" + i + "天"), new Callback() {
                @Override
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null){
                        System.out.println("主题:" + recordMetadata.topic() + "->" + "分区:" + recordMetadata.partition());
                    }else {
                        e.printStackTrace();
                    }
                }
            });*/

            // 同步发送,在异步发送的基础上调用get()方法
            RecordMetadata kafka = kafkaProducer.send(new ProducerRecord<>("kafka-offset", "learn kafka by yourself, 第" + i + "天"), new Callback() {
                @Override
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null) {
                        System.out.println("主题:" + recordMetadata.topic() + "->" + "分区:" + recordMetadata.partition());
                    } else {
                        e.printStackTrace();
                    }
                }
            }).get();
            System.out.println("同步发送返回结果:" + "分区:" + kafka.partition() + " 主题:" +  kafka.topic() + " offset:" + kafka.offset());
            // 延迟一会,会看到消息发往不同的分区
            Thread.sleep(100);
        }
        // 5. 关闭资源
        kafkaProducer.close();
    }
}
主题:kafka-offset->分区:0
同步发送返回结果:分区:0 主题:kafka-offset offset:3187
21:10:22.837 [kafka-producer-network-thread | producer-1] DEBUG org.apache.kafka.clients.NetworkClient - [Producer clientId=producer-1] Sending PRODUCE request with header RequestHeader(apiKey=PRODUCE, apiVersion=9, clientId=producer-1, correlationId=61) and timeout 30000 to node 0: {acks=-1,timeout=30000,partitionSizes=[kafka-offset-2=101]}
21:10:22.849 [kafka-producer-network-thread | producer-1] DEBUG org.apache.kafka.clients.NetworkClient - [Producer clientId=producer-1] Received PRODUCE response from node 0 for request with header RequestHeader(apiKey=PRODUCE, apiVersion=9, clientId=producer-1, correlationId=61): ProduceResponseData(responses=[TopicProduceResponse(name='kafka-offset', partitionResponses=[PartitionProduceResponse(index=2, errorCode=0, baseOffset=2586, logAppendTimeMs=-1, logStartOffset=0, recordErrors=[], errorMessage=null)])], throttleTimeMs=0)
主题:kafka-offset->分区:2
同步发送返回结果:分区:2 主题:kafka-offset offset:2586
21:10:22.950 [kafka-producer-network-thread | producer-1] DEBUG org.apache.kafka.clients.NetworkClient - [Producer clientId=producer-1] Sending PRODUCE request with header RequestHeader(apiKey=PRODUCE, apiVersion=9, clientId=producer-1, correlationId=62) and timeout 30000 to node 0: {acks=-1,timeout=30000,partitionSizes=[kafka-offset-1=101]}
21:10:22.970 [kafka-producer-network-thread | producer-1] DEBUG org.apache.kafka.clients.NetworkClient - [Producer clientId=producer-1] Received PRODUCE response from node 0 for request with header RequestHeader(apiKey=PRODUCE, apiVersion=9, clientId=producer-1, correlationId=62): ProduceResponseData(responses=[TopicProduceResponse(name='kafka-offset', partitionResponses=[PartitionProduceResponse(index=1, errorCode=0, baseOffset=2773, logAppendTimeMs=-1, logStartOffset=0, recordErrors=[], errorMessage=null)])], throttleTimeMs=0)
主题:kafka-offset->分区:1
同步发送返回结果:分区:1 主题:kafka-offset offset:2773
21:10:23.073 [main] INFO org.apache.kafka.clients.producer.KafkaProducer - [Producer clientId=producer-1] Closing the Kafka producer with timeoutMillis = 9223372036854775807 ms.
21:10:23.073 [kafka-producer-network-thread | producer-1] DEBUG org.apache.kafka.clients.producer.internals.Sender - [Producer clientId=producer-1] Beginning shutdown of Kafka producer I/O thread, sending remaining records.
21:10:23.078 [kafka-producer-network-thread | producer-1] DEBUG org.apache.kafka.clients.producer.internals.Sender - [Producer clientId=producer-1] Shutdown of Kafka producer I/O thread has completed.
21:10:23.078 [main] INFO org.apache.kafka.common.metrics.Metrics - Metrics scheduler closed

3.3 生产者分区

3.3.1 分区的好处

  1. 便于合理使用存储资源每个Partition在一个Broker上存储,可以把海量的数据按照分区切割成一块一块数据存储在多台Broker上合理控制分区的任务,可以实现负载均衡的效果。

  2. 提高并行度,生产者可以以分区为单位发送数据消费者可以以分区为单位进行消费数据

3.3.2 生产者消息发送分区策略

1)默认的分区器 DefaultPartitioner 

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.clients.producer.internals;

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.utils.Utils;

import java.util.Map;

/**
 * The default partitioning strategy:
 * <ul>
 * <li>If a partition is specified in the record, use it
 * <li>If no partition is specified but a key is present choose a partition based on a hash of the key
 * <li>If no partition or key is present choose the sticky partition that changes when the batch is full.
 * 
 * See KIP-480 for details about sticky partitioning.
 */
public class DefaultPartitioner implements Partitioner {

    private final StickyPartitionCache stickyPartitionCache = new StickyPartitionCache();

    public void configure(Map<String, ?> configs) {}

    /**
     * Compute the partition for the given record.
     *
     * @param topic The topic name
     * @param key The key to partition on (or null if no key)
     * @param keyBytes serialized key to partition on (or null if no key)
     * @param value The value to partition on or null
     * @param valueBytes serialized value to partition on or null
     * @param cluster The current cluster metadata
     */
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        return partition(topic, key, keyBytes, value, valueBytes, cluster, cluster.partitionsForTopic(topic).size());
    }

    /**
     * Compute the partition for the given record.
     *
     * @param topic The topic name
     * @param numPartitions The number of partitions of the given {@code topic}
     * @param key The key to partition on (or null if no key)
     * @param keyBytes serialized key to partition on (or null if no key)
     * @param value The value to partition on or null
     * @param valueBytes serialized value to partition on or null
     * @param cluster The current cluster metadata
     */
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster,
                         int numPartitions) {
        if (keyBytes == null) {
            return stickyPartitionCache.partition(topic, cluster);
        }
        // hash the keyBytes to choose a partition
        return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
    }

    public void close() {}
    
    /**
     * If a batch completed for the current sticky partition, change the sticky partition. 
     * Alternately, if no sticky partition has been determined, set one.
     */
    public void onNewBatch(String topic, Cluster cluster, int prevPartition) {
        stickyPartitionCache.nextPartition(topic, cluster, prevPartition);
    }
}

(1)指明partition的情况下,直接将指明的值作为partition值;例如partition=0,所有数据写入分区0。

(2)没有指明partition值但有key的情况下,将key的hash值与topic的partition数进行取余得到partition值;例如:key1的hash值=5,key2的hash值=6,topic的partition数=2,那么key1对应的value1写入1号分区,key2对应的value2写入0号分区。

(3)既没有partition值又没有key值的情况下,Kafka采用StickyPartition(黏性分区器)会随机选择一个分区,并尽可能一直使用该分区,待该分区的batch已满或者已完成,Kafka再随机选择一个分区进行使用(和上一次的分区不同)。例如:第一次随机选择0号分区,等0号分区当前批次满了(默认16k)或者linger.ms设置的时间到,Kafka再随机选择一个分区进行使用(如果还是0会继续随机)。

#######################################################################

由于后面所有案例都需要配置 kafka 的基础信息,因此,此处将kafka公共配置信息抽取出来,代码如下:

package com.atguigu.springcloud.kafka.producer;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

/**
 * @author huangdh
 * @version 1.0
 * @description:
 * @date 2022-11-10 17:09
 */
public class KafkaProducerFactory {

    public static KafkaProducer<String,String> getProducer(){

        // 1. 创建kafka生产者的配置对象
        Properties properties = new Properties();

        // 2. 给kafka配置对象添加配置信息
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"8.8.80.8:9092");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 3.添加自定义分区器
//        properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.atguigu.springcloud.kafka.partitions.CustomerPartitioner");

        // 4.batch.size: 批次大小,默认16K
//        properties.put(ProducerConfig.BATCH_SIZE_CONFIG,16384);

        // 5.linger.ms: 等待时间,默认为0
//        properties.put(ProducerConfig.LINGER_MS_CONFIG,1);

        // 6.RecordAccumulator:缓冲区大小,默认32M:buffer.memory
//        properties.put(ProducerConfig.BUFFER_MEMORY_CONFIG,33554432);

        // 6.compression.type:压缩,默认none,可配置值gzip、snappy、lz4和zstd
//        properties.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"snappy");

        // 7.设置事务id(必须)
//        properties.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG,"transaction_id_0");

        // 8.开启幂等性(开启事务,必须开启幂等性,默认为true)
//        properties.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG,true);


        return new KafkaProducer<String, String>(properties);
    }
}

设置日志打印级别:

设置main函数的日志打印级别为 info 级别,默认为debug级别,添加如下代码:

    // 修改日志打印级别,默认为debug级别
    static {
        LoggerContext loggerContext = (LoggerContext) LoggerFactory.getILoggerFactory();
        List<Logger> loggerList = loggerContext.getLoggerList();
        loggerList.forEach(logger -> {
            logger.setLevel(Level.INFO);
        });
    }

默认打印日志级别,输出一些 DEBUG org.apache.kafka.clients.NetworkClient 信息,比较混乱。

主题:kafka-offset->分区:1
21:40:55.386 [kafka-producer-network-thread | producer-1] DEBUG org.apache.kafka.clients.NetworkClient - [Producer clientId=producer-1] Sending PRODUCE request with header RequestHeader(apiKey=PRODUCE, apiVersion=9, clientId=producer-1, correlationId=6) and timeout 30000 to node 0: {acks=-1,timeout=30000,partitionSizes=[kafka-offset-1=107]}
21:40:55.401 [kafka-producer-network-thread | producer-1] DEBUG org.apache.kafka.clients.NetworkClient - [Producer clientId=producer-1] Received PRODUCE response from node 0 for request with header RequestHeader(apiKey=PRODUCE, apiVersion=9, clientId=producer-1, correlationId=6): ProduceResponseData(responses=[TopicProduceResponse(name='kafka-offset', partitionResponses=[PartitionProduceResponse(index=1, errorCode=0, baseOffset=2787, logAppendTimeMs=-1, logStartOffset=0, recordErrors=[], errorMessage=null)])], throttleTimeMs=0)
主题:kafka-offset->分区:1
21:40:55.486 [kafka-producer-network-thread | producer-1] DEBUG org.apache.kafka.clients.NetworkClient - [Producer clientId=producer-1] Sending PRODUCE request with header RequestHeader(apiKey=PRODUCE, apiVersion=9, clientId=producer-1, correlationId=7) and timeout 30000 to node 0: {acks=-1,timeout=30000,partitionSizes=[kafka-offset-1=107]}
21:40:55.497 [kafka-producer-network-thread | producer-1] DEBUG org.apache.kafka.clients.NetworkClient - [Producer clientId=producer-1] Received PRODUCE response from node 0 for request with header RequestHeader(apiKey=PRODUCE, apiVersion=9, clientId=producer-1, correlationId=7): ProduceResponseData(responses=[TopicProduceResponse(name='kafka-offset', partitionResponses=[PartitionProduceResponse(index=1, errorCode=0, baseOffset=2788, logAppendTimeMs=-1, logStartOffset=0, recordErrors=[], errorMessage=null)])], throttleTimeMs=0)
主题:kafka-offset->分区:1
21:40:55.588 [main] INFO org.apache.kafka.clients.producer.KafkaProducer - [Producer clientId=producer-1] Closing the Kafka producer with timeoutMillis = 9223372036854775807 ms.
21:40:55.589 [kafka-producer-network-thread | producer-1] DEBUG org.apache.kafka.clients.producer.internals.Sender - [Producer clientId=producer-1] Beginning shutdown of Kafka producer I/O thread, sending remaining records.
21:40:55.596 [kafka-producer-network-thread | producer-1] DEBUG org.apache.kafka.clients.producer.internals.Sender - [Producer clientId=producer-1] Shutdown of Kafka producer I/O thread has completed.
21:40:55.596 [main] INFO org.apache.kafka.common.metrics.Metrics - Metrics scheduler closed

修改之后日志打印详情

主题:kafka-offset->分区:1
主题:kafka-offset->分区:1
主题:kafka-offset->分区:1
主题:kafka-offset->分区:1
主题:kafka-offset->分区:1

 

案例一:根据自定义规则指定发送分区,如果value中包含“kafka”信息时,则将其发送到0分区。

  • 定义类实现Partitioner接口。

  • 重写partition()方法。

(1)自定义分区类,实现 Partitioner 接口

package com.atguigu.springcloud.kafka.partitions;

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;

import java.util.Map;

/**
 * @author huangdh
 * @version 1.0
 * @description:
 * @date 2022-11-10 17:44
 */
public class CustomerPartitioner implements Partitioner {

    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {

        // 获取消息
        String msgValue = value.toString();

        // 创建分区
        int partition;

        // 如果value中包含有指定信息时,则将其发送到指定的分区
        if (msgValue.contains("kafka")){
            partition = 0;
        }else {
            partition = 1;
        }
        return partition;
    }

    @Override
    public void close() {

    }

    @Override
    public void configure(Map<String, ?> configs) {

    }
}

(2)自定义类 CustomProducerCallbackPartitions

import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.Logger;
import ch.qos.logback.classic.LoggerContext;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.slf4j.LoggerFactory;

import java.util.List;

/**
 * @author huangdh
 * @version 1.0
 * @description: 将数据发往指定分区
 * @date 2022-11-10 17:06
 */
public class CustomProducerCallbackPartitions {

    // 修改日志打印级别,默认为debug级别
    static {
        LoggerContext loggerContext = (LoggerContext) LoggerFactory.getILoggerFactory();
        List<Logger> loggerList = loggerContext.getLoggerList();
        loggerList.forEach(logger -> {
            logger.setLevel(Level.INFO);
        });
    }

    public static void main(String[] args) throws InterruptedException {

        KafkaProducer<String, String> producer = KafkaProducerFactory.getProducer();

        for (int i = 0; i < 5; i++) {

            String msg = "work hard ";
            if (i%2 == 0){
                msg = "learn kafka by yourself,第" + i + "day";
            }else {
                msg = msg + "第" + i + "day";
            }
            // 自定义分区
            producer.send(new ProducerRecord<>("kafka",msg), new Callback() {
                @Override
                public void onCompletion(RecordMetadata metadata, Exception exception) {
                    if (exception == null) {
                        System.out.println("主题:" + metadata.topic() + "->" + "分区:" + metadata.partition());
                    } else {
                        exception.printStackTrace();
                    }
                }
            });
            Thread.sleep(100);
        }
        // 关闭资源
        producer.close();
    }
}

(3)运行结果:

主题:kafka->分区:0
主题:kafka->分区:1
主题:kafka->分区:0
主题:kafka->分区:1
主题:kafka->分区:0

#######################################################################

案例二:没有指明partition值但有key的情况下,将key的hash值与topic的partition数进行取余得到partition值

查看“kafka”主题分区详情:一共7个分区

[root@-9930 bin]# ./kafka-topics.sh --describe --zookeeper zookeeper1:2181 --topic kafka
Topic: kafka    TopicId: aW-JTB_PQw-aUpXd0hF47A PartitionCount: 7       ReplicationFactor: 1    Configs: 
        Topic: kafka    Partition: 0    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka    Partition: 1    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka    Partition: 2    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka    Partition: 3    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka    Partition: 4    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka    Partition: 5    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka    Partition: 6    Leader: 0       Replicas: 0     Isr: 0

(1)key值设置为 String partition = "a"时,主题分区为。

主题:kafka->分区:5
主题:kafka->分区:5
主题:kafka->分区:5
主题:kafka->分区:5
主题:kafka->分区:5

(2)key值设置为 String partition = "b"时,主题分区为。

主题:kafka->分区:6
主题:kafka->分区:6
主题:kafka->分区:6
主题:kafka->分区:6
主题:kafka->分区:6

(3) key值设置为 String partition = "c"时,主题分区为。

主题:kafka->分区:0
主题:kafka->分区:0
主题:kafka->分区:0
主题:kafka->分区:0
主题:kafka->分区:0

 

 3.4 如何提高生产者吞吐量

  1. batch.size:修改批次大小,默认16K。

  2. linger.ms:修改等待时间,默认0。

  3. RecordAccumulator:修改缓冲区大小,默认32M:buffer.memory

  4. compression.type:修改压缩,默认none,可配置值:gzip、snappy、lz4和zstd 

// 4.batch.size: 批次大小,默认16K
properties.put(ProducerConfig.BATCH_SIZE_CONFIG,16384);

// 5.linger.ms: 等待时间,默认为0
properties.put(ProducerConfig.LINGER_MS_CONFIG,1);

// 6.RecordAccumulator:缓冲区大小,默认32M:buffer.memory
properties.put(ProducerConfig.BUFFER_MEMORY_CONFIG,33554432);

// 6.compression.type:压缩,默认none,可配置值gzip、snappy、lz4和zstd
properties.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"snappy");

 

3.5 如何提高数据可靠性

3.5.1 ACK应答原理

  1. acks:0,生产者发送过来的数据,不需要等数据落盘应答。Leader节点收到消息之后,在数据落盘之前就挂掉了,则会导致数据丢失。数据可靠性分析:数据丢失。

  2. acks:1,生产者发送过来的数据,Leader收到数据后应答。应答完成之后,还没开始同步副本,Leader节点就挂掉了,新的Leader不会再收到之前发送的消息,因为生产者已经认为消息发送成功了。 数据可靠性分析:数据丢失。

  3. acks:-1(all):生产者发送过来的数据,Leader和ISR队列里面的所有节点收齐数据后应答。

 

思考:acks:-1(all),Leader收到数据,所有Follower都开始同步数据,但有一个Follower,因为某种故障,迟迟不能与Leader进行同步,那这个问题怎么解决呢?

Leader维护了一个动态的in-syncreplicaset(ISR),意为和Leader保持同步的Follower+Leader集合(leader:0,isr:0,1,2)。如果Follower长时间未向Leader发送通信请求或同步数据,则该Follower将被踢出ISR。该时间阈值由replica.lag.time.max.ms参数设定,默认30s。例如2超时,(leader:0, isr:0,1)。这样就不用等长期联系不上或者已经故障的节点。

acks:-1(all)数据可靠性分析

  • 如果分区副本设置为1个,或者ISR里应答的最小副本数量(min.insync.replicas默认为1)设置为1,和ack=1的效果是一样的,仍然有丢数的风险(leader:0,isr:0)。

  • 数据完全可靠条件=ACK级别设置为-1+分区副本大于等于2+ISR里应答的最小副本数量大于等于2。

// 设置acks
properties.put(ProducerConfig.ACKS_CONFIG, "all");

3.5.2可靠性总结

  • acks=0,生产者发送过来数据就不管了,可靠性差,效率高。

  • acks=1,生产者发送过来数据Leader应答,可靠性中等,效率中等。

  • acks=-1,生产者发送过来数据Leader和ISR队列里面所有Follwer应答,可靠性高,效率低。

在生产环境中,acks=0很少使用;acks=1,一般用于传输普通日志,允许丢个别数据;acks=-1,一般用于传输和钱相关的数据,对可靠性要求比较高的场景。

 

3.6 数据去重

3.6.1 数据传递语义

  • 至少一次(AtLeastOnce)=ACK级别设置为-1+分区副本大于等于2+ISR里应答的最小副本数量大于等于2。可以保证数据不丢失,但是不能保证数据不重复;

  • 最多一次(AtMostOnce)=ACK级别设置为0。可以保证数据不重复,但是不能保证数据不丢失。

  • 精确一次(ExactlyOnce):精确一次(ExactlyOnce)=幂等性+至少一次(ack=-1+分区副本数>=2+ISR最小副本数量>=2)。对于一些非常重要的信息,比如和钱相关的数据,要求数据既不能重复也不丢失。

Kafka0.11版本以后,引入了一项重大特性:幂等性和事务。

3.6.2 幂等性

幂等性就是指Producer不论向Broker发送多少次重复数据,Broker端都只会持久化一条,保证了不重复。

重复数据的判断标准:具有<PID,Partition,SeqNumber>相同主键的消息提交时,Broker只会持久化一条。其中PID是Kafka每次重启都会分配一个新的Partition表示分区号;SequenceNumber是单调自增的。

所以幂等性只能保证的是在单分区单会话内不重复

如何使用幂等性?

开启参数enable.idempotence 默认为true,false关闭。

// 8.开启幂等性(开启事务,必须开启幂等性,默认为true)
properties.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG,true);

 

3.6.3 生产者事务

1)Kafka事务原理开启事务,必须开启幂等性。

2)Kafka事务一共有5个API

/**
     * See {@link KafkaProducer#initTransactions()}
     */
    void initTransactions();

    /**
     * See {@link KafkaProducer#beginTransaction()}
     */
    void beginTransaction() throws ProducerFencedException;

    /**
     * See {@link KafkaProducer#sendOffsetsToTransaction(Map, String)}
     */
    @Deprecated
    void sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets,
                                  String consumerGroupId) throws ProducerFencedException;

    /**
     * See {@link KafkaProducer#sendOffsetsToTransaction(Map, ConsumerGroupMetadata)}
     */
    void sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets,
                                  ConsumerGroupMetadata groupMetadata) throws ProducerFencedException;

    /**
     * See {@link KafkaProducer#commitTransaction()}
     */
    void commitTransaction() throws ProducerFencedException;

    /**
     * See {@link KafkaProducer#abortTransaction()}
     */
    void abortTransaction() throws ProducerFencedException;

 

3)使用kafka事务配置如下

// 7.设置事务id(必须)
properties.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG,"transaction_id_0");

// 8.开启幂等性(开启事务,必须开启幂等性,默认为true)
properties.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG,true);

 

4)自定类 :CustomProducerTransactions 实现kafka事务


import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.Logger;
import ch.qos.logback.classic.LoggerContext;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.slf4j.LoggerFactory;

import java.util.List;

/**
 * @author huangdh
 * @version 1.0
 * @description:
 * @date 2022-11-10 21:45
 */
public class CustomProducerTransactions {

    // 修改日志打印级别,默认为debug级别
    static {
        LoggerContext loggerContext = (LoggerContext) LoggerFactory.getILoggerFactory();
        List<Logger> loggerList = loggerContext.getLoggerList();
        loggerList.forEach(logger -> {
            logger.setLevel(Level.INFO);
        });
    }

    public static void main(String[] args) {

        KafkaProducer<String, String> producer = KafkaProducerFactory.getProducer();

        // 初始化事务
        producer.initTransactions();
        // 开启事务
        producer.beginTransaction();
        try {
            for (int i = 0; i < 5; i++) {
                producer.send(new ProducerRecord<>("kafka", "study hard everyday" + i), new Callback() {
                    @Override
                    public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                        if (e == null) {
                            System.out.println("主题:" + recordMetadata.topic() + "->" + "分区:" + recordMetadata.partition());
                        } else {
                            e.printStackTrace();
                        }
                    }
                });
            }

//            int i = 1/0;
            // 提交事务
            producer.commitTransaction();
        } catch (Exception e) {
            // 终止事务
            producer.abortTransaction();
            e.printStackTrace();
        }finally {
            producer.close();
        }
    }
}

执行结果如下: 

23:04:15.842 [kafka-producer-network-thread | producer-transaction_id_0] INFO org.apache.kafka.clients.producer.internals.TransactionManager - [Producer clientId=producer-transaction_id_0, transactionalId=transaction_id_0] Discovered transaction coordinator 8.8.80.8:9092 (id: 0 rack: null)
23:04:15.979 [kafka-producer-network-thread | producer-transaction_id_0] INFO org.apache.kafka.clients.producer.internals.TransactionManager - [Producer clientId=producer-transaction_id_0, transactionalId=transaction_id_0] ProducerId set to 1000 with epoch 4
主题:kafka->分区:1
主题:kafka->分区:1
主题:kafka->分区:1
主题:kafka->分区:1
主题:kafka->分区:1

消费者消费详情如下:

 执行过程中抛异常时:

23:05:56.610 [main] INFO org.apache.kafka.clients.producer.KafkaProducer - [Producer clientId=producer-transaction_id_0, transactionalId=transaction_id_0] Aborting incomplete transaction
org.apache.kafka.common.errors.TransactionAbortedException: Failing batch since transaction was aborted
org.apache.kafka.common.errors.TransactionAbortedException: Failing batch since transaction was aborted
org.apache.kafka.common.errors.TransactionAbortedException: Failing batch since transaction was aborted
org.apache.kafka.common.errors.TransactionAbortedException: Failing batch since transaction was aborted
org.apache.kafka.common.errors.TransactionAbortedException: Failing batch since transaction was aborted
java.lang.ArithmeticException: / by zero
	at com.atguigu.springcloud.kafka.producer.CustomProducerTransactions.main(CustomProducerTransactions.java:53)

 

 3.7 数据有序/数据乱序

  1. 单分区内,有序。多分区内,分区与分区间无序。

  2. kafka在1.x版本之前,保证数据单分区内有序,条件如下:

    1. max.in.flight.requests.per.connection=1(不需要考虑是否开启幂等性)。

  3. kafka在1.x及以后版本保证数据单分区有序,条件如下:

    1. 未开启幂等性:max.in.flight.requests.per.connection需要设置为1。

    2. 开启幂等性max.in.flight.requests.per.connection需要设置小于等于5。因为在kafka1.x以后,启用幂等后,kafka服务端会缓存producer发来的最近5个request的元数据,故无论如何,都可以保证最近5个request的数据都是有序的。

 

4.Kafka Broker

4.1 Kafka Broker工作流程

4.1.1 Zookeeper存储的Kafka信息

  1. /kafka/brokers/ids:[0,1,2],记录有哪些服务器。

  2. /kafka/brokers/topics/first/partitions/0/state:{"leader":1,"isr":[1,0,2] } 记录谁是Leader,有哪些服务器可用。

  3. /kafka/controller:{“brokerid”:0} 辅助选举Leader

 

4.1.2 Kafka Broker工作流程

  1. broker启动后在zk中注册

  2. controller谁先注册,谁说了算

  3. 由选举出来的controller监听brokers节点变化

  4. controller决定Leader选举

  5. controller将节点信息上传到zk中

  6. 其他controller从zk同步相关信息

  7. 假设broker1中Leader挂了

  8. controller监听到节点发生变化

  9. 获取ISR

  10. 选举新的Leader(在isr中存活为前提,按照AR中排在前面的优先,例如:ar[1,0,2],那么leader就会按照1,0,2的顺序轮询)

  11. 更新Leader及ISR

 

4.1.3 Broker重要参数

参数名称   描述
replica.lag.time.max.ms ISR中,如果Follower长时间未向Leader发送通信请求或同步数据,则该Follower将被踢出ISR。该时间阈值默认30s
auto.leader.rebalance.enable 默认是true。 自动Leader Partition 平衡。
leader.imbalance.per.broker.percentage 默认是10%。每个broker允许的不平衡的leader的比率。如果每个broker超过了这个值,控制器会触发leader的平衡。
leader.imbalance.check.interval.seconds  默认值300秒。检查leader负载是否平衡的间隔时间。
log.segment.bytes Kafka中log日志是分成一块块存储的,此配置是指log日志划分 成块的大小,默认值1G。 
log.index.interval.bytes  默认4kb,kafka里面每当写入了4kb大小的日志(.log),然后就往index文件里面记录一个索引。
log.retention.hours Kafka中数据保存的时间,默认7天。
log.retention.minute Kafka中数据保存的时间,分钟级别,默认关闭。
log.retention.ms Kafka中数据保存的时间,毫秒级别,默认关闭。
log.retention.check.interval.ms 检查数据是否保存超时的间隔,默认是5分钟。
log.retention.bytes 默认等于-1,表示无穷大。超过设置的所有日志总大小,删除最早的segment。 
log.cleanup.policy  默认是delete,表示所有数据启用删除策略; 如果设置值为compact,表示所有数据启用压缩策略。
num.io.threads 默认是8。负责写磁盘的线程数。整个参数值要占总核数的50%。
num.replica.fetchers 副本拉取线程数,这个参数占总核数的50%的1/3 。
num.network.threads  强制页缓存刷写到磁盘的条数,默认是long的最大值,9223372036854775807。一般不建议修改,
交给系统自己管理。
log.flush.interval.ms 每隔多久,刷数据到磁盘,默认是null。一般不建议修改,交给系统自己管理。

 

4.2 Kafka副本

4.2.1 kafka副本

  1. Kafka副本作用:提高数据可靠性。

  2. Kafka默认副本1个,生产环境一般配置为2个,保证数据可靠性;太多副本会增加磁盘存储空间,增加网络上数据传输,降低效率。

  3. Kafka中副本分为:Leader和Follower。Kafka生产者只会把数据发往Leader,然后Follower找Leader进行同步数据。 

  4. Kafka分区中的所有副本统称为AR(Assigned Repllicas),AR = ISR + OSR。

    1. ISR,表示和Leader保持同步的Follower集合如果Follower长时间未向Leader发送通信请求或同步数据,则该Follower将被踢出ISR。该时间阈值由replica.lag.time.max.ms参数设定,默认30s。Leader发生故障之后,就会从ISR中选举新的Leader。

    2. OSR,表示Follower与Leader副本同步时,延迟过多的副本。

4.2.2 Leader选举流程

Kafka集群中有一个broker的Controller会被选举为Controller Leader,负责管理集群broker的上下线,所有topic的分区副本分配和Leader选举等工作。Controller的信息同步工作是依赖于Zookeeper的。 

4.2.3 Leader和Follower故障处理细节

LEO(Log End Offset):每个副本的最后一个offset,LEO其实就是最新的offset+1。

HW(High Watermark):所有副本中最小的LEO。

1)Follower故障

(1)Follower发生故障后会被临时踢出ISR。

(2)这个期间Leader和Follower继续接收数据。

(3)待该Follower恢复后,Follower会读取本地磁盘记录上次的HW,并将log文件高于HW的部分截取掉,从HW开始向Leader进行同步。

(4)等该Follower的LEO大于等于该Partition的HW,即Follower追上Leader之后,就可以重新加入ISR了。

 

2)Leader故障处理机制

(1)Leader发生故障之后,会从ISR中选出一个新的Leader。

(2)为保证多个副本之间的数据一致性,其余的Follower会先将各自的log文件高于HW的部分截掉,然后从新的Leader同步数据。

注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。

 

4.3 文件存储

4.3.1 文件储存机制

1)Topic数据存储机制

Topic是逻辑上的概念,而partition是物理上的概念,每个partition对应于一个log文,该log文件中存储的就是Producer生产的数据。Producer生产的数据会被不断追加到该log文件末端,为防止log文件过大导致数据定位效率低下,Kafka采取了分片和索引机制将每个partition分为多个segment。每个segment包括:“.index”文件、“.log”文件和.timeindex等文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号,例如:first-0。

-rw-r--r-- 1 root root 10485760 11月 13 21:05 00000000000000000000.index
-rw-r--r-- 1 root root   245851 11月 13 21:10 00000000000000000000.log
-rw-r--r-- 1 root root 10485756 11月 13 21:05 00000000000000000000.timeindex
-rw-r--r-- 1 root root       10 11月 13 20:51 00000000000000002643.snapshot
-rw-r--r-- 1 root root        8 11月 13 20:51 leader-epoch-checkpoint
  • .log:日志文件

  • .index:偏移量索引文件

  • .timeindex:时间戳索引文件

2)log文件和index文件

 

日志存储参数配置   
参数名称 描述
log.segment.bytes Kafka中log日志是分成一块块存储的,此配置是指log日志划分成块的大小,默认值1G。 
log.index.interval.bytes 默认4kb,kafka里面每当写入了4kb大小的日志(.log),然后就往index文件里面记录一个索引。 稀疏索引。

 

4.3.2 文件清理策略

Kafka中默认的日志保存时间为7天,可以通过调整如下参数修改保存时间。

  • log.retention.hours,最低优先级小时,默认7天。

  • log.retention.minutes,分钟。 

  • log.retention.ms,最高优先级毫秒。 

  • log.retention.check.interval.ms,负责设置检查周期,默认5分钟。

 

Kafka中提供的日志清理策略有delete和compact两种。 

(1)delete日志删除:将过期数据删除。log.cleanup.policy = delete    所有数据启用删除策略。

a.基于时间:默认打开。以segment中所有记录中的最大时间戳作为该文件时间戳。 

b.基于大小:默认关闭。超过设置的所有日志总大小,删除最早的segment。log.retention.bytes,默认等于-1,表示无穷大。 

(2)compact日志压缩compact日志压缩:对于相同key的不同value值,只保留最后一个版本。log.cleanup.policy=compact所有数据启用压缩策略。

压缩后的offset可能是不连续的,比如上图中没有6,当从这些offset消费消息时,将会拿到比这个offset大的offset对应的消息,实际上会拿到offset为7的消息,并从这个位置开始消费。
这种策略只适合特殊场景,比如消息的key是用户ID,value是用户的资料,通过这种压缩策略,整个消息集里就保存了所有用户最新的资料。

4.4 高效读写数据

1. Kafka是分布式集群,可以采用分区技术,并行度高。

2. 读数据采用稀疏索引,可以快速定位到要消费的数据。

3. 顺序写磁盘。

Kafka的producer生产数据,要写入到log文件中,写的过程是一直追加到文件末端,为顺序写官网有数据表明,同样的磁盘,顺序写能到600M/s,而随机写只有100K/s。这与磁盘的机械机构有关,顺序写之所以快,是因为其省去了大量磁头寻址的时间。

4. 页缓存 + 零拷贝技术

零拷贝:Kafka的数据加工处理操作交由Kafka生产者和Kafka消费者处理。Kafka Broker应用层不关心存储的数据,所以就不用走应用层,传输效率高。

PageCache页缓存:Kafka重度依赖底层操作系统提供的PageCache功能。当上层有写操作时,操作系统只是将数据写入PageCache。当读操作发生时,先从PageCache中查找,如果找不到,再去磁盘中读取。实际上PageCache是把尽可能多的空闲内存都当做了磁盘缓存来使用。

参数名称 描述
log.flush.interval.messages  强制页缓存刷写到磁盘的条数,默认是long的最大值,9223372036854775807。一般不建议修改,交给系统自己管理。
log.flush.interval.ms 每隔多久,刷数据到磁盘,默认是null。一般不建议修改,交给系统自己管理。

5. Kafka消费者

5.1 Kafka消费方式 

5.1.1 pull(拉)模式

consumer采用从broker中主动拉取数据。Kafka采用这种方式。pull模式不足之处是,如果Kafka没有数据,消费者可能会陷入循环中,一直返回空数据。

5.1.2 push(推)模式

Kafka没有采用这种方式,因为由broker决定消息发送速率,很难适应所有消费者的消费速率。例如推送的速度是50m/s,Consumer1、Consumer2就来不及处理消息。

5.2 Kafka消费者工作流程

5.2.1 kafka消费者工作流程

(1)消费者组ConsumerGroup(CG)

ConsumerGroup(CG):消费者组,由多个consumer组成。形成一个消费者组的条件,是所有消费者的groupid相同。

  • 消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费

  • 消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。

(2)消费者组初始化流程

coordinator:辅助实现消费者组的初始化和分区的分配coordinator节点选择= groupid的hashcode值% 50(__consumer_offsets的分区数量)。

例如:groupid的hashcode值= 1,1% 50 = 1,那么__consumer_offsets主题的1号分区,在哪个broker上,就选择这个节点的coordinator作为这个消费者组的老大。消费者组下的所有的消费者提交offset的时候就往这个分区去提交offset。

 

  1. 每个consumer都发送JoinGroup请求。
  2. 选出一个consumer作为leader。
  3. 把要消费的topic情况发送给leader 消费者。
  4. leader会负责制定消费方案。
  5. 把消费方案发给coordinator。
  6. Coordinator就把消费方案下发给各个consumer。
  7. 每个消费者都会和coordinator保持心跳(默认3s),一旦超时(session.timeout.ms=45s),该消费者会被移除,并触发再平衡;或者消费者处理消息的时间过长(max.poll.interval.ms5分钟),也会触发再平衡

(3)消费者组消费详细流程

消费者初始化:

消费者订阅主题:

消费者拉取和处理数据:

5.2.2 消费者重要参数

参数名称   描述
bootstrap.servers 向Kafka集群建立初始连接用到的host/port列表。
key.deserializer/value.deserializer 指定接收消息的key和value的反序列化类型。一定要写全类名。
group.id  标记消费者所属的消费者组。 
enable.auto.commit  默认值为true,消费者会自动周期性地向服务器提交偏移量。
auto.commit.interval.ms  如果设置了 enable.auto.commit 的值为true, 则该值定义了消费者偏移量向Kafka提交的频率,默认5s
auto.offset.reset  当Kafka中没有初始偏移量或当前偏移量在服务器中不存在(如,数据被删除了),该如何处理? earliest:自动重置偏移量到最早的偏移量。 latest:默认,自动重置偏移量为最新的偏移量。 none:如果消费组原来的(previous)偏移量不存在,则向消费者抛异常。 anything:向消费者抛异常。
offsets.topic.num.partitions __consumer_offsets的分区数,默认是50个分区。 
heartbeat.interval.ms Kafka消费者和coordinator之间的心跳时间,默认3s。 该条目的值必须小于 session.timeout.ms ,也不应该高于 session.timeout.ms 的1/3。 
session.timeout.ms  Kafka消费者和coordinator之间连接超时时间,默认45s。超过该值,该消费者被移除,消费者组执行再平衡。
max.poll.interval.ms  消费者处理消息的最大时长,默认是5分钟超过该值,该消费者被移除,消费者组执行再平衡。
fetch.min.bytes  默认1个字节。消费者获取服务器端一批消息最小的字节数。
fetch.max.wait.ms 默认500ms如果没有从服务器端获取到一批数据的最小字节数。该时间到,仍然会返回数据。
fetch.max.bytes  默认Default: 52428800(50 m)。消费者获取服务器端一批消息最大的字节数。如果服务器端一批次的数据大于该值(50m)仍然可以拉取回来这批数据,因此,这不是一个绝对最大值。一批次的大小受message.max.bytes (broker config)or max.message.bytes (topic config)影响。
max.poll.records  一次poll拉取数据返回消息的最大条数,默认是500条。 

 

5.3 消费者API

***消费者配置信息***


import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.RoundRobinAssignor;
import org.apache.kafka.clients.consumer.StickyAssignor;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.util.Properties;

/**
 * @author huangdh
 * @version 1.0
 * @description:消费者
 * @date 2022-11-11 18:06
 */
public class KafkaConsumerFactory {

    public static KafkaConsumer<String,String> getConsumer(){

        // 1.创建消费者的配置对象
        Properties properties = new Properties();

        // 2.给消费者配置对象添加参数
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"8.8.80.88:9092");

        // 配置序列化 必须
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
        // 配置消费者组(组名任意起名) 必须
        properties.put(ConsumerConfig.GROUP_ID_CONFIG,"kafka-consumer-offset-3");

        // 修改分区分配策略,Kafka默认的分区分配策略就是Range + CooperativeSticky
        // RoundRobin轮询分区策略,是把所有的partition 和所有的consumer 都列出来,然后按照hashcode进行排序,最后通过轮询算法来分配partition 给到各个消费者。
        // properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, RoundRobinAssignor.class.getName());
        // Sticky以及再平衡,可以理解为分配的结果带有“粘性的”。即在执行一次新的分配之前,考虑上一次分配的结果,尽量少的调整分配的变动,可以节省大量的开销。
        // properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, StickyAssignor.class.getName());

        // 是否自动提交offset
        // properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,true);
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);

        return new KafkaConsumer<String, String>(properties);
    }
}

 

(1)自定义消费者,消费“kafka”主题

import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.LoggerContext;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.slf4j.LoggerFactory;

import java.time.Duration;
import java.util.ArrayList;
import java.util.List;

/**
 * @author huangdh
 * @version 1.0
 * @description:
 * @date 2022-11-11 18:35
 */
public class CustomerConsumer1 {

    // 修改日志打印级别,默认为debug级别
    static {
        LoggerContext loggerContext = (LoggerContext) LoggerFactory.getILoggerFactory();
        List<ch.qos.logback.classic.Logger> loggerList = loggerContext.getLoggerList();
        loggerList.forEach(logger -> {
            logger.setLevel(Level.INFO);
        });
    }

    public static void main(String[] args) {

        // 1.创建消费者
        KafkaConsumer<String, String> consumer = KafkaConsumerFactory.getConsumer();

        // 2. 订阅要消费的主题(可以同时消费多个主题)
        ArrayList<String> topics = new ArrayList<>();
        topics.add("kafka");
        consumer.subscribe(topics);

        // 3.消费/拉取的数据
        while (true) {
            // 每隔一秒拉取一次数据
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));
            for (ConsumerRecord<String, String> record : consumerRecords) {
                System.out.println("***********************************************");
                System.out.println(record);
                System.out.println("***********************************************");
            }
        }

    }
}

 消费日志信息如下:

ConsumerRecord(topic = kafka, partition = 6, leaderEpoch = 0, offset = 484, CreateTime = 1668522493867, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第1天)
***********************************************
ConsumerRecord(topic = kafka, partition = 5, leaderEpoch = 0, offset = 515, CreateTime = 1668522494311, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第5天)
***********************************************
ConsumerRecord(topic = kafka, partition = 6, leaderEpoch = 0, offset = 485, CreateTime = 1668522494544, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第7天)
***********************************************
ConsumerRecord(topic = kafka, partition = 4, leaderEpoch = 0, offset = 510, CreateTime = 1668522494878, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第10天)
***********************************************

 (2)指定分区消费(消费1分区)

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;

import java.time.Duration;
import java.util.ArrayList;

/**
 * @author huangdh
 * @version 1.0
 * @description:
 * @date 2022-11-11 18:35
 */
public class CustomerConsumerPartitions {

    public static void main(String[] args) {

        // 1.创建消费者
        KafkaConsumer<String, String> consumer = KafkaConsumerFactory.getConsumer();

        // 2.订阅主题(指定分区消费)
        ArrayList<TopicPartition> topicPartitions = new ArrayList<>();
        topicPartitions.add(new TopicPartition("kafka",1));
        consumer.assign(topicPartitions);

        // 3.消费/拉取的数据
        while (true) {
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));
            for (ConsumerRecord<String, String> record : consumerRecords) {
                System.out.println(record);
                System.out.println("***********************************************");
            }
        }

    }
}

 消费日志信息如下:

ConsumerRecord(topic = kafka, partition = 1, leaderEpoch = 0, offset = 673, CreateTime = 1668522780239, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第5天)
***********************************************
ConsumerRecord(topic = kafka, partition = 1, leaderEpoch = 0, offset = 674, CreateTime = 1668522781364, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第15天)
***********************************************
ConsumerRecord(topic = kafka, partition = 1, leaderEpoch = 0, offset = 675, CreateTime = 1668522782138, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第22天)
***********************************************
ConsumerRecord(topic = kafka, partition = 1, leaderEpoch = 0, offset = 676, CreateTime = 1668522782482, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第25天)
***********************************************
ConsumerRecord(topic = kafka, partition = 1, leaderEpoch = 0, offset = 677, CreateTime = 1668522782927, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第29天)
***********************************************
ConsumerRecord(topic = kafka, partition = 1, leaderEpoch = 0, offset = 678, CreateTime = 1668522784038, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第39天)
***********************************************
ConsumerRecord(topic = kafka, partition = 1, leaderEpoch = 0, offset = 679, CreateTime = 1668522784709, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第45天)
***********************************************
ConsumerRecord(topic = kafka, partition = 1, leaderEpoch = 0, offset = 680, CreateTime = 1668522786041, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第57天)

 (3)消费者组消费案例

消费者组配置信息如下,同属于:“kafka-consumer-group”组。

        // 1.创建消费者的配置对象
        Properties properties = new Properties();

        // 2.给消费者配置对象添加参数
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"8.8.80.8:9092");

        // 配置序列化 必须
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
        // 配置消费者组(组名任意起名) 必须
        properties.put(ConsumerConfig.GROUP_ID_CONFIG,"kafka-consumer-group");

 消费者1:


import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.LoggerContext;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.slf4j.LoggerFactory;

import java.time.Duration;
import java.util.ArrayList;
import java.util.List;

/**
 * @author huangdh
 * @version 1.0
 * @description:
 * @date 2022-11-11 18:35
 */
public class CustomerConsumer1 {

    // 修改日志打印级别,默认为debug级别
    static {
        LoggerContext loggerContext = (LoggerContext) LoggerFactory.getILoggerFactory();
        List<ch.qos.logback.classic.Logger> loggerList = loggerContext.getLoggerList();
        loggerList.forEach(logger -> {
            logger.setLevel(Level.INFO);
        });
    }

    public static void main(String[] args) {

        // 1.创建消费者
        KafkaConsumer<String, String> consumer = KafkaConsumerFactory.getConsumer();

        // 2. 订阅要消费的主题(可以同时消费多个主题)
        ArrayList<String> topics = new ArrayList<>();
        topics.add("kafka");
        consumer.subscribe(topics);

        // 3.消费/拉取的数据
        while (true) {
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));
            for (ConsumerRecord<String, String> record : consumerRecords) {
                System.out.println(record);
                System.out.println("***********************************************");
            }
        }

    }
}

 消费者2和消费者3代码同消费者1,复制改名即可。启动消费者1、消费者2、消费者3,消费日志如下:

首先,查看主题:“kafka”的分区数,详情如下:总共7分分区

[root@-9930 bin]# ./kafka-topics.sh --describe --zookeeper zookeeper1:2181 --topic kafka
Topic: kafka    TopicId: aW-JTB_PQw-aUpXd0hF47A PartitionCount: 7       ReplicationFactor: 1    Configs: 
        Topic: kafka    Partition: 0    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka    Partition: 1    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka    Partition: 2    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka    Partition: 3    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka    Partition: 4    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka    Partition: 5    Leader: 0       Replicas: 0     Isr: 0
        Topic: kafka    Partition: 6    Leader: 0       Replicas: 0     Isr: 0

 consumer1,消费分区为:0/1/2

ConsumerRecord(topic = kafka, partition = 2, leaderEpoch = 0, offset = 613, CreateTime = 1668523256431, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第2天)
***********************************************
ConsumerRecord(topic = kafka, partition = 0, leaderEpoch = 0, offset = 743, CreateTime = 1668523256883, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第6天)
***********************************************
ConsumerRecord(topic = kafka, partition = 2, leaderEpoch = 0, offset = 614, CreateTime = 1668523257114, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第8天)
***********************************************
ConsumerRecord(topic = kafka, partition = 1, leaderEpoch = 0, offset = 681, CreateTime = 1668523257688, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第13天)
***********************************************
ConsumerRecord(topic = kafka, partition = 0, leaderEpoch = 0, offset = 744, CreateTime = 1668523258029, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第16天)
***********************************************
ConsumerRecord(topic = kafka, partition = 1, leaderEpoch = 0, offset = 682, CreateTime = 1668523258144, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第17天)
***********************************************
ConsumerRecord(topic = kafka, partition = 0, leaderEpoch = 0, offset = 745, CreateTime = 1668523258256, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第18天)
***********************************************

 consumer2,消费分区为:3/4 

ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 492, CreateTime = 1668523257454, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第11天)
***********************************************
ConsumerRecord(topic = kafka, partition = 4, leaderEpoch = 0, offset = 530, CreateTime = 1668523257916, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第15天)
***********************************************
ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 493, CreateTime = 1668523258369, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第19天)
***********************************************
ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 494, CreateTime = 1668523258818, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第23天)
***********************************************
ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 495, CreateTime = 1668523259156, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第26天)
***********************************************
ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 496, CreateTime = 1668523259383, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第28天)
***********************************************
ConsumerRecord(topic = kafka, partition = 4, leaderEpoch = 0, offset = 531, CreateTime = 1668523259497, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第29天)

  consumer3,消费分区为:5/6

***********************************************
ConsumerRecord(topic = kafka, partition = 5, leaderEpoch = 0, offset = 530, CreateTime = 1668523256129, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第0天)
***********************************************
ConsumerRecord(topic = kafka, partition = 5, leaderEpoch = 0, offset = 531, CreateTime = 1668523256543, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第3天)
***********************************************
ConsumerRecord(topic = kafka, partition = 6, leaderEpoch = 0, offset = 502, CreateTime = 1668523256769, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第5天)
***********************************************
ConsumerRecord(topic = kafka, partition = 6, leaderEpoch = 0, offset = 503, CreateTime = 1668523257573, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第12天)
***********************************************
ConsumerRecord(topic = kafka, partition = 6, leaderEpoch = 0, offset = 504, CreateTime = 1668523257801, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第14天)
***********************************************
ConsumerRecord(topic = kafka, partition = 6, leaderEpoch = 0, offset = 505, CreateTime = 1668523258594, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第21天)

 从日志信息可知,每个分区只可由一个消费者消费。

 5.4 分区的分配以及再平衡

 一个consumer group中有多个consumer组成,一个topic有多个partition组成。那么问题来了,到底由哪个consumer来消费哪个
partition的数据?

Kafka有四种主流的分区分配策略:Range、RoundRobin、Sticky、CooperativeSticky

可以通过配置参数partition.assignment.strategy,修改分区的分配策略。默认策略是Range +  CooperativeSticky。Kafka可以同时使用多个分区分配策略。

 

 

参数名称   描述
heartbeat.interval.ms Kafka消费者和coordinator之间的心跳时间,默认3s。 该条目的值必须小于 session.timeout.ms ,也不应该高于 session.timeout.ms 的1/3。 
session.timeout.ms  Kafka消费者和coordinator之间连接超时时间,默认45s。超过该值,该消费者被移除,消费者组执行再平衡。
max.poll.interval.ms  消费者处理消息的最大时长,默认是5分钟超过该值,该消费者被移除,消费者组执行再平衡。
partition.assignment.strategy 消费者分区分配策略,默认策略是Range +CooperativeSticky。Kafka可以同时使用多个分区分配策略。可以选择的策略包括:Range、RoundRobin、Sticky、CooperativeSticky 

 

5.4.1 Range以及再平衡

1)Range分区策略原理 

Range 是对每个topic 而言的。首先对同一个topic 里面的分区按照序号进行排序,并对消费者按照字母顺序进行排序假如现在有7 个分区,3 个消费者,排序后的分区将会是0,1,2,3,4,5,6;消费者排序完之后将会是C0,C1,C2。

通过partitions数/consumer数来决定每个消费者应该消费几个分区。如果除不尽,那么前面几个消费者将会多消费1 个分区。

 

例如,7/3 = 2 余1 ,除不尽,那么消费者C0 便会多消费1 个分区。8/3=2余2,除不尽,那么C0和C1分别多消费一个

注意:如果只是针对1 个topic 而言,C0消费者多消费1个分区影响不是很大。但是如果有N 多个topic,那么针对每个topic,消费者C0都将多消费1 个分区,topic越多,C0消费的分区会比其他消费者明显多消费N 个分区。即,多个topic的时候Range分区策略容易产生数据倾斜!

Coding:启动CustomerConsumer1、CustomerConsumer2、CustomerConsumer3,并往“kafka”主题中发送1000条数据,查看三个消费者消费情况。

消费者1:
ConsumerRecord(topic = kafka, partition = 2, leaderEpoch = 0, offset = 613, CreateTime = 1668523256431, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第2天)
***********************************************
ConsumerRecord(topic = kafka, partition = 0, leaderEpoch = 0, offset = 743, CreateTime = 1668523256883, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第6天)
***********************************************
ConsumerRecord(topic = kafka, partition = 2, leaderEpoch = 0, offset = 614, CreateTime = 1668523257114, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第8天)
***********************************************
ConsumerRecord(topic = kafka, partition = 1, leaderEpoch = 0, offset = 681, CreateTime = 1668523257688, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第13天)
***********************************************
ConsumerRecord(topic = kafka, partition = 0, leaderEpoch = 0, offset = 744, CreateTime = 1668523258029, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第16天)
***********************************************
ConsumerRecord(topic = kafka, partition = 1, leaderEpoch = 0, offset = 682, CreateTime = 1668523258144, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第17天)
***********************************************
ConsumerRecord(topic = kafka, partition = 0, leaderEpoch = 0, offset = 745, CreateTime = 1668523258256, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第18天)
***********************************************

消费者2
ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 492, CreateTime = 1668523257454, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第11天)
***********************************************
ConsumerRecord(topic = kafka, partition = 4, leaderEpoch = 0, offset = 530, CreateTime = 1668523257916, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第15天)
***********************************************
ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 493, CreateTime = 1668523258369, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第19天)
***********************************************
ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 494, CreateTime = 1668523258818, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第23天)
***********************************************
ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 495, CreateTime = 1668523259156, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第26天)
***********************************************
ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 496, CreateTime = 1668523259383, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第28天)
***********************************************
ConsumerRecord(topic = kafka, partition = 4, leaderEpoch = 0, offset = 531, CreateTime = 1668523259497, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第29天)
    
消费者3:
***********************************************
ConsumerRecord(topic = kafka, partition = 5, leaderEpoch = 0, offset = 530, CreateTime = 1668523256129, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第0天)
***********************************************
ConsumerRecord(topic = kafka, partition = 5, leaderEpoch = 0, offset = 531, CreateTime = 1668523256543, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第3天)
***********************************************
ConsumerRecord(topic = kafka, partition = 6, leaderEpoch = 0, offset = 502, CreateTime = 1668523256769, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第5天)
***********************************************
ConsumerRecord(topic = kafka, partition = 6, leaderEpoch = 0, offset = 503, CreateTime = 1668523257573, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第12天)
***********************************************
ConsumerRecord(topic = kafka, partition = 6, leaderEpoch = 0, offset = 504, CreateTime = 1668523257801, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第14天)
***********************************************
ConsumerRecord(topic = kafka, partition = 6, leaderEpoch = 0, offset = 505, CreateTime = 1668523258594, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第21天)

2)Range再平衡

 将CustomerConsumer2终止,并查看CustomerConsumer1和CustomerConsumer3的消费情况。

说明:消费者组需要按照超时时间45s来判断它是否退出,所以需要等待,时间到了45s后,判断它真的退出就会把任务分配给其他broker执行

CustomerConsumer1消费日志,CustomerConsumer1消费到了3号分区的数据:

CustomerConsumer3消费日志,CustomerConsumer3消耗到了4号分区的数据:

说明:消费者2已经被踢出消费者组,所以重新按照range方式分配。

 然后再启动CustomerConsumer2,并查看CustomerConsumer1/2/3的消费情况。

消费者1:
ConsumerRecord(topic = kafka, partition = 2, leaderEpoch = 0, offset = 613, CreateTime = 1668523256431, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第2天)
***********************************************
ConsumerRecord(topic = kafka, partition = 0, leaderEpoch = 0, offset = 743, CreateTime = 1668523256883, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第6天)
***********************************************
ConsumerRecord(topic = kafka, partition = 2, leaderEpoch = 0, offset = 614, CreateTime = 1668523257114, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第8天)
***********************************************
ConsumerRecord(topic = kafka, partition = 1, leaderEpoch = 0, offset = 681, CreateTime = 1668523257688, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第13天)
***********************************************
ConsumerRecord(topic = kafka, partition = 0, leaderEpoch = 0, offset = 744, CreateTime = 1668523258029, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第16天)
***********************************************
ConsumerRecord(topic = kafka, partition = 1, leaderEpoch = 0, offset = 682, CreateTime = 1668523258144, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第17天)
***********************************************
ConsumerRecord(topic = kafka, partition = 0, leaderEpoch = 0, offset = 745, CreateTime = 1668523258256, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第18天)
***********************************************

消费者2
ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 492, CreateTime = 1668523257454, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第11天)
***********************************************
ConsumerRecord(topic = kafka, partition = 4, leaderEpoch = 0, offset = 530, CreateTime = 1668523257916, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第15天)
***********************************************
ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 493, CreateTime = 1668523258369, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第19天)
***********************************************
ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 494, CreateTime = 1668523258818, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第23天)
***********************************************
ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 495, CreateTime = 1668523259156, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第26天)
***********************************************
ConsumerRecord(topic = kafka, partition = 3, leaderEpoch = 0, offset = 496, CreateTime = 1668523259383, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第28天)
***********************************************
ConsumerRecord(topic = kafka, partition = 4, leaderEpoch = 0, offset = 531, CreateTime = 1668523259497, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第29天)
    
消费者3:
***********************************************
ConsumerRecord(topic = kafka, partition = 5, leaderEpoch = 0, offset = 530, CreateTime = 1668523256129, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第0天)
***********************************************
ConsumerRecord(topic = kafka, partition = 5, leaderEpoch = 0, offset = 531, CreateTime = 1668523256543, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第3天)
***********************************************
ConsumerRecord(topic = kafka, partition = 6, leaderEpoch = 0, offset = 502, CreateTime = 1668523256769, serialized key size = -1, serialized value size = 32, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第5天)
***********************************************
ConsumerRecord(topic = kafka, partition = 6, leaderEpoch = 0, offset = 503, CreateTime = 1668523257573, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第12天)
***********************************************
ConsumerRecord(topic = kafka, partition = 6, leaderEpoch = 0, offset = 504, CreateTime = 1668523257801, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第14天)
***********************************************
ConsumerRecord(topic = kafka, partition = 6, leaderEpoch = 0, offset = 505, CreateTime = 1668523258594, serialized key size = -1, serialized value size = 33, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第21天)

 5.4.2 RoundRobin以及再平衡 

 RoundRobin针对集群中所有Topic而言。RoundRobin轮询分区策略,是把所有的partition 和所有的consumer 都列出来,然后按照hashcode进行排序,最后通过轮询算法来分配partition 给到各个消费者

 

 修改分区策略配置文件如下所示:

// RoundRobin轮询分区策略,是把所有的partition 和所有的consumer 都列出来,然后按照hashcode进行排序,最后通过轮询算法来分配partition 给到各个消费者。
properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, RoundRobinAssignor.class.getName());

 Coding案例略过。。。

 5.4.3 Sticky以及再平衡 

粘性分区定义:可以理解为分配的结果带有“粘性的”。即在执行一次新的分配之前,考虑上一次分配的结果,尽量少的调整分配的变动,可以节省大量的开销。

 粘性分区是Kafka从0.11.x版本开始引入这种分配策略,首先会尽量均衡的放置分区到消费者上面,在出现同一消费者组内消费者出现问题的时候,会尽量保持原有分配的分区不变化。

 配置文件修改如下:

// Sticky以及再平衡,可以理解为分配的结果带有“粘性的”。即在执行一次新的分配之前,考虑上一次分配的结果,尽量少的调整分配的变动,可以节省大量的开销。
properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, StickyAssignor.class.getName());

  Coding案例(代码略过):

(1)停止掉0号消费者,快速重新发送消息观看结果(45s以内,越快越好)

 1号消费者:消费到2、5、3号分区数据。 

 2号消费者:消费到4、6号分区数据。

 0号消费者的任务会按照粘性规则,尽可能均衡的随机分成0和1号分区数据,分别由1号消费者或者2号消费者消费。

说明:0号消费者挂掉后,消费者组需要按照超时时间45s来判断它是否退出,所以需要等待,时间到了45s后,判断它真的退出就会把任务分配给其他broker执行。

(2)再次重新发送消息观看结果(45s以后)。

1号消费者:消费到2、3、5号分区数据。

2号消费者:消费到0、1、4、6号分区数据。 

说明:消费者0已经被踢出消费者组,所以重新按照粘性方式分配。

 

5.5 offset位移

5.5.1 offset的默认维护位置

Kafka0.9版本之前,consumer默认将offset保存在Zookeeper中。从0.9版本开始,consumer默认将offset保存在Kafka一个内置的topic中,该topic为__consumer_offsets。

 

 __consumer_offsets主题里面采用key和value的方式存储数据key是group.id+topic+分区号,value就是当前offset的值。每隔一段时间,kafka内部会对这个topic进行compact,也就是每个group.id+topic+分区号就保留最新数据。 

 

(0)思想:__consumer_offsets为Kafka中的topic,那就可以通过消费者进行消费。

(1)在配置文件config/consumer.properties中添加配置exclude.internal.topics=false,默认是true,表示不能消费系统主题。为了查看该系统主题数据,所以该参数修改为false。

 

5.5.2 自动提交offset 

自动提交offset的相关参数:

enable.auto.commit:是否开启自动提交offset功能,默认是true,消费者会自动周期性地向服务器提交偏移量。。

auto.commit.interval.ms:自动提交offset的时间间隔,默认是5s。如果设置了 enable.auto.commit 的值为true, 则该值定义了消
费者偏移量向Kafka提交的频率,默认5s。

Coding案例:

配置:

// 是否自动提交offset,默认是true
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,true);

import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.Logger;
import ch.qos.logback.classic.LoggerContext;
import com.atguigu.springcloud.kafka.consumer.KafkaConsumerFactory;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.slf4j.LoggerFactory;

import java.time.Duration;
import java.util.Arrays;
import java.util.List;

/**
 * @author huangdh
 * @version 1.0
 * @description: 消费者自动提交offset
 * @date 2022-11-12 21:44
 */
public class CustomConsumerAutoOffset {

    // 修改日志打印级别,默认为debug级别
    static {
        LoggerContext loggerContext = (LoggerContext) LoggerFactory.getILoggerFactory();
        List<Logger> loggerList = loggerContext.getLoggerList();
        loggerList.forEach(logger -> {
            logger.setLevel(Level.INFO);
        });
    }

    public static void main(String[] args) {

        // 1.创建kafka消费者
        KafkaConsumer<String, String> consumer = KafkaConsumerFactory.getConsumer();

        // 2.订阅主题
        consumer.subscribe(Arrays.asList("kafka-offset"));

        // 3.消费数据
        while (true){
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.value());
            }
        }
    }
}

5.5.3 手动提交 offset

为什么要手动提交 offset?

虽然自动提交offset十分简单便利,但由于其是基于时间提交的,开发人员难以把握offset提交的时机。因此Kafka还提供了手动提交offset的API。

手动提交offset的方法有两种:分别是commitSync(同步提交)和commitAsync(异步提交)。两者的相同点是,都会将本次提交的一批数据最高的偏移量提交不同点是,同步提交阻塞当前线程,一直到提交成功,并且会自动失败重试(由不可控因素导致,也会出现提交失败);而异步提交则没有失败重试机制,故有可能提交失败。

commitSync(同步提交):必须等待offset提交完毕,再去消费下一批数据。虽然同步提交offset更可靠一些,但是由于其会阻塞当前线程,直到提交成功。因此吞吐量会受到很大的影响。因此更多的情况下,会选用异步提交offset的方式。

commitAsync(异步提交):发送完提交offset请求后,就开始消费下一批数据了。

 

Coding案例:


import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.Logger;
import ch.qos.logback.classic.LoggerContext;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.slf4j.LoggerFactory;

import java.time.Duration;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;

/**
 * @author huangdh
 * @version 1.0
 * @description: 手动提交,同步提交offset
 * @date 2022-11-12 21:57
 */
public class CustomConsumerByHandSync {

    // 修改日志打印级别,默认为debug级别
    static {
        LoggerContext loggerContext = (LoggerContext) LoggerFactory.getILoggerFactory();
        List<Logger> loggerList = loggerContext.getLoggerList();
        loggerList.forEach(logger -> {
            logger.setLevel(Level.INFO);
        });
    }


    public static void main(String[] args) {
        
        // 1.创建消费者的配置对象
        Properties properties = new Properties();
        // 2.给消费者配置对象添加参数
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"8.8.80.8:9092");
        // 配置key value 序列化 必须
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
        // 配置消费者组(组名任意起名) 必须
        properties.put(ConsumerConfig.GROUP_ID_CONFIG,"kafka-consumer-offset-4");
        // 是否自动提交offset
        // properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,true);
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);

        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);
        // 订阅主题
        consumer.subscribe(Arrays.asList("kafka-offset"));

        while (true){
            // 每隔一分钟拉取一次
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.value());
            }
            // 手动-同步提交offset
            consumer.commitSync();
        }
    }
}
import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.Logger;
import ch.qos.logback.classic.LoggerContext;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.slf4j.LoggerFactory;

import java.time.Duration;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;

/**
 * @author huangdh
 * @version 1.0
 * @description: 手动提交,异步提交offset
 * @date 2022-11-12 22:25
 */
public class CustomConsumerByHandAsync {

    // 修改日志打印级别,默认为debug级别
    static {
        LoggerContext loggerContext = (LoggerContext) LoggerFactory.getILoggerFactory();
        List<Logger> loggerList = loggerContext.getLoggerList();
        loggerList.forEach(logger -> {
            logger.setLevel(Level.INFO);
        });
    }


    public static void main(String[] args) {
        
        // 1.创建消费者的配置对象
        Properties properties = new Properties();
        // 2.给消费者配置对象添加参数
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"8.134.80.232:9092");
        // 配置序列化 必须
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
        // 配置消费者组(组名任意起名) 必须
        properties.put(ConsumerConfig.GROUP_ID_CONFIG,"kafka-consumer-offset-5");
        // 是否自动提交offset
        // properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,true);
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);

        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);
        // 订阅主题
        consumer.subscribe(Arrays.asList("kafka-offset"));

        while (true){
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.value());
            }
            // 手动-异步提交offset
            consumer.commitAsync();
        }
    }
}

 

 5.5.4 指定 Offset 消费

 auto.offset.reset = earliest | latest | none    默认是latest。

(1)earliest:自动将偏移量重置为最早的偏移量,--from-beginning。 

(2)latest(默认值):自动将偏移量重置为最新偏移量。

(3)none:如果未找到消费者组的先前偏移量,则向消费者抛出异常。 

Coding案例:


import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.Logger;
import ch.qos.logback.classic.LoggerContext;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.slf4j.LoggerFactory;

import java.time.Duration;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Properties;
import java.util.Set;

/**
 * @author huangdh
 * @version 1.0
 * @description: 任意指定offset位移开始消费
 * @date 2022-11-12 22:29
 */
public class CustomConsumerSeek {

    // 修改日志打印级别,默认为debug级别
    static {
        LoggerContext loggerContext = (LoggerContext) LoggerFactory.getILoggerFactory();
        List<Logger> loggerList = loggerContext.getLoggerList();
        loggerList.forEach(logger -> {
            logger.setLevel(Level.INFO);
        });
    }


    public static void main(String[] args) {


        // 1.创建消费者的配置对象
        Properties properties = new Properties();

        // 2.给消费者配置对象添加参数
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"8.8.80.8:9092");

        // 配置序列化 必须
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
        // 配置消费者组(组名任意起名) 必须
        properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test2");

        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);
        // 订阅主题
        consumer.subscribe(Arrays.asList("kafka-offset"));

        Set<TopicPartition> topicPartitions = consumer.assignment();
        while (topicPartitions.size() == 0){
            consumer.poll(Duration.ofSeconds(1));
            // 获取消费者分区分配信息(有了分区分配信息才能开始消费)
            topicPartitions = consumer.assignment();
        }

        // 遍历所有分区,并指定offset从1700的位置开始消费
        for (TopicPartition topicPartition : topicPartitions) {
            consumer.seek(topicPartition,1400);
        }

        // 消费该主题数据
        while (true){
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));

            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord);
            }
        }
    }
}

消费日志信息:

23:27:19.977 [main] INFO org.apache.kafka.clients.consumer.KafkaConsumer - [Consumer clientId=consumer-test2-1, groupId=test2] Seeking to offset 1400 for partition kafka-offset-0
23:27:19.979 [main] INFO org.apache.kafka.clients.consumer.KafkaConsumer - [Consumer clientId=consumer-test2-1, groupId=test2] Seeking to offset 1400 for partition kafka-offset-1
23:27:19.979 [main] INFO org.apache.kafka.clients.consumer.KafkaConsumer - [Consumer clientId=consumer-test2-1, groupId=test2] Seeking to offset 1400 for partition kafka-offset-2
ConsumerRecord(topic = kafka-offset, partition = 0, leaderEpoch = 0, offset = 1400, CreateTime = 1668263302250, serialized key size = -1, serialized value size = 34, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第571天)
ConsumerRecord(topic = kafka-offset, partition = 0, leaderEpoch = 0, offset = 1401, CreateTime = 1668263302700, serialized key size = -1, serialized value size = 34, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第575天)
ConsumerRecord(topic = kafka-offset, partition = 0, leaderEpoch = 0, offset = 1402, CreateTime = 1668263302926, serialized key size = -1, serialized value size = 34, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第577天)
ConsumerRecord(topic = kafka-offset, partition = 0, leaderEpoch = 0, offset = 1403, CreateTime = 1668263303380, serialized key size = -1, serialized value size = 34, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第581天)
ConsumerRecord(topic = kafka-offset, partition = 0, leaderEpoch = 0, offset = 1404, CreateTime = 1668263303833, serialized key size = -1, serialized value size = 34, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第585天)
ConsumerRecord(topic = kafka-offset, partition = 0, leaderEpoch = 0, offset = 1405, CreateTime = 1668263304168, serialized key size = -1, serialized value size = 34, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第588天)
ConsumerRecord(topic = kafka-offset, partition = 0, leaderEpoch = 0, offset = 1406, CreateTime = 1668263304392, serialized key size = -1, serialized value size = 34, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第590天)
ConsumerRecord(topic = kafka-offset, partition = 0, leaderEpoch = 0, offset = 1407, CreateTime = 1668263304951, serialized key size = -1, serialized value size = 34, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = learn kafka by yourself, 第595天)

5.5.5 指定时间消费

需求:在生产环境中,会遇到最近消费的几个小时数据异常,想重新按照时间消费。例如要求按照时间消费前一天的数据,怎么处理?

Coding案例:

import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.Logger;
import ch.qos.logback.classic.LoggerContext;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.OffsetAndTimestamp;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.internals.Topic;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.slf4j.LoggerFactory;

import java.time.Duration;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.Set;

/**
 * @author huangdh
 * @version 1.0
 * @description:
 * @date 2022-11-13 9:49
 */
public class CustomConsumerSeekOfTime {

    // 修改日志打印级别,默认为debug级别
    static {
        LoggerContext loggerContext = (LoggerContext) LoggerFactory.getILoggerFactory();
        List<Logger> loggerList = loggerContext.getLoggerList();
        loggerList.forEach(logger -> {
            logger.setLevel(Level.INFO);
        });
    }

    public static void main(String[] args) {

        // 0 配置信息
        Properties properties = new Properties();

        // 2.给消费者配置对象添加参数
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"8.8.80.8:9092");

        // 配置序列化 必须
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());

        // 组id
        properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test110");

        // 1 创建消费者
        KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);

        // 2 订阅主题
        ArrayList<String> topics = new ArrayList<>();
        topics.add("kafka-offset");
        kafkaConsumer.subscribe(topics);

        Set<TopicPartition> topicPartitions = new HashSet<>();
        while (topicPartitions.size() == 0){
            ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));

            // 获取消费者分区分配信息(有了分区分配信息才能开始消费)
            topicPartitions = kafkaConsumer.assignment();
        }

        HashMap<TopicPartition,Long> timestapToSearch = new HashMap<>();
        // 封装集合存储,每个分区对应一天前的数据
        for (TopicPartition topicPartition : topicPartitions) {
            // 获取从1天前开始消费的每个分区的offset
            timestapToSearch.put(topicPartition,System.currentTimeMillis() - 1*24*3600*1000);
        }

        // 获取从1天前开始消费的每个分区的offset
        Map<TopicPartition, OffsetAndTimestamp> offsets = kafkaConsumer.offsetsForTimes(timestapToSearch);

        // 遍历每个分区,对每个分区设置消费时间
        for (TopicPartition topicPartition : topicPartitions) {
            OffsetAndTimestamp offsetAndTimestamp = offsets.get(topicPartition);

            // 根据时间指定开始消费的位置
            if (offsetAndTimestamp != null){
                kafkaConsumer.seek(topicPartition,offsetAndTimestamp.offset());
            }
        }

        // 消费该主题数据
        while (true){
            ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord);
            }
        }
    }
}

5.5.6 重复消费和漏消费

重复消费:已经消费了数据,但是offset没提交。 

漏消费:先提交offset后消费,有可能会造成数据的漏消费。

 

 如何做到既不漏消费也不重复消费呢?消费者事务

 5.6 消费者事务

 如果想完成Consumer端的精准一次性消费,那么需要Kafka消费端将消费过程和提交offset过程做原子绑定。

 5.7 数据积压(消费者如何提高吞吐量)

 1)如果是Kafka消费能力不足,则可以考虑增加Topic的分区数,并且同时提升消费组的消费者数量,消费者数=分区数(两者缺一不可)

 2)如果是下游的数据处理不及时:提高每批次拉取的数量。批次拉取数据过少(拉取数据/处理时间<生产速度),使处理的数据小于生产的数据,也会造成数据积压。

 

参数名称   描述
fetch.max.bytes 默认Default: 52428800(50 m)。消费者获取服务器端一批消息最大的字节数。如果服务器端一批次的数据大于该值(50m)仍然可以拉取回来这批数据,因此,这不是一个绝对最大值。一批次的大小受message.max.bytes (broker config)or max.message.bytes (topic config)影响。
max.poll.records  一次poll拉取数据返回消息的最大条数,默认是500条 

 

posted @ 2022-11-13 17:06  BlogMemory  阅读(1736)  评论(0编辑  收藏  举报