JAVA多线程-种类及生命周期

3. 多线程种类

Java中线程池的顶级接口是Executor,严格意义上讲Exccutor并不是一个线程池,而是一个执行线程的工具。真正的线程池接口是ExecutorService。

Executor源码:

点击查看代码
public interface Executor {

    /**
     * Executes the given command at some time in the future.  The command
     * may execute in a new thread, in a pooled thread, or in the calling
     * thread, at the discretion of the {@code Executor} implementation.
     *
     * @param command the runnable task
     * @throws RejectedExecutionException if this task cannot be
     * accepted for execution
     * @throws NullPointerException if command is null
     */
    void execute(Runnable command);
}

 

3.1.4 

 

 

Executor与ExecutorService关系如图所示:

ExecutorService源码:

点击查看代码
/**
 * An {@link Executor} that provides methods to manage termination and
 * methods that can produce a {@link Future} for tracking progress of
 * one or more asynchronous tasks.
 *
 * <p>An {@code ExecutorService} can be shut down, which will cause
 * it to reject new tasks.  Two different methods are provided for
 * shutting down an {@code ExecutorService}. The {@link #shutdown}
 * method will allow previously submitted tasks to execute before
 * terminating, while the {@link #shutdownNow} method prevents waiting
 * tasks from starting and attempts to stop currently executing tasks.
 * Upon termination, an executor has no tasks actively executing, no
 * tasks awaiting execution, and no new tasks can be submitted.  An
 * unused {@code ExecutorService} should be shut down to allow
 * reclamation of its resources.
 *
 * <p>Method {@code submit} extends base method {@link
 * Executor#execute(Runnable)} by creating and returning a {@link Future}
 * that can be used to cancel execution and/or wait for completion.
 * Methods {@code invokeAny} and {@code invokeAll} perform the most
 * commonly useful forms of bulk execution, executing a collection of
 * tasks and then waiting for at least one, or all, to
 * complete. (Class {@link ExecutorCompletionService} can be used to
 * write customized variants of these methods.)
 *
 * <p>The {@link Executors} class provides factory methods for the
 * executor services provided in this package.
 *
 * <h3>Usage Examples</h3>
 *
 * Here is a sketch of a network service in which threads in a thread
 * pool service incoming requests. It uses the preconfigured {@link
 * Executors#newFixedThreadPool} factory method:
 *
 *  <pre> {@code
 * class NetworkService implements Runnable {
 *   private final ServerSocket serverSocket;
 *   private final ExecutorService pool;
 *
 *   public NetworkService(int port, int poolSize)
 *       throws IOException {
 *     serverSocket = new ServerSocket(port);
 *     pool = Executors.newFixedThreadPool(poolSize);
 *   }
 *
 *   public void run() { // run the service
 *     try {
 *       for (;;) {
 *         pool.execute(new Handler(serverSocket.accept()));
 *       }
 *     } catch (IOException ex) {
 *       pool.shutdown();
 *     }
 *   }
 * }
 *
 * class Handler implements Runnable {
 *   private final Socket socket;
 *   Handler(Socket socket) { this.socket = socket; }
 *   public void run() {
 *     // read and service request on socket
 *   }
 * }}</pre>
 *
 * The following method shuts down an {@code ExecutorService} in two phases,
 * first by calling {@code shutdown} to reject incoming tasks, and then
 * calling {@code shutdownNow}, if necessary, to cancel any lingering tasks:
 *
 *  <pre> {@code
 * void shutdownAndAwaitTermination(ExecutorService pool) {
 *   pool.shutdown(); // Disable new tasks from being submitted
 *   try {
 *     // Wait a while for existing tasks to terminate
 *     if (!pool.awaitTermination(60, TimeUnit.SECONDS)) {
 *       pool.shutdownNow(); // Cancel currently executing tasks
 *       // Wait a while for tasks to respond to being cancelled
 *       if (!pool.awaitTermination(60, TimeUnit.SECONDS))
 *           System.err.println("Pool did not terminate");
 *     }
 *   } catch (InterruptedException ie) {
 *     // (Re-)Cancel if current thread also interrupted
 *     pool.shutdownNow();
 *     // Preserve interrupt status
 *     Thread.currentThread().interrupt();
 *   }
 * }}</pre>
 *
 * <p>Memory consistency effects: Actions in a thread prior to the
 * submission of a {@code Runnable} or {@code Callable} task to an
 * {@code ExecutorService}
 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
 * any actions taken by that task, which in turn <i>happen-before</i> the
 * result is retrieved via {@code Future.get()}.
 *
 * @since 1.5
 * @author Doug Lea
 */
public interface ExecutorService extends Executor {

    /**
     * Initiates an orderly shutdown in which previously submitted
     * tasks are executed, but no new tasks will be accepted.
     * Invocation has no additional effect if already shut down.
     *
     * <p>This method does not wait for previously submitted tasks to
     * complete execution.  Use {@link #awaitTermination awaitTermination}
     * to do that.
     *
     * @throws SecurityException if a security manager exists and
     *         shutting down this ExecutorService may manipulate
     *         threads that the caller is not permitted to modify
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}{@code ("modifyThread")},
     *         or the security manager's {@code checkAccess} method
     *         denies access.
     */
    void shutdown();

    /**
     * Attempts to stop all actively executing tasks, halts the
     * processing of waiting tasks, and returns a list of the tasks
     * that were awaiting execution.
     *
     * <p>This method does not wait for actively executing tasks to
     * terminate.  Use {@link #awaitTermination awaitTermination} to
     * do that.
     *
     * <p>There are no guarantees beyond best-effort attempts to stop
     * processing actively executing tasks.  For example, typical
     * implementations will cancel via {@link Thread#interrupt}, so any
     * task that fails to respond to interrupts may never terminate.
     *
     * @return list of tasks that never commenced execution
     * @throws SecurityException if a security manager exists and
     *         shutting down this ExecutorService may manipulate
     *         threads that the caller is not permitted to modify
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}{@code ("modifyThread")},
     *         or the security manager's {@code checkAccess} method
     *         denies access.
     */
    List<Runnable> shutdownNow();

    /**
     * Returns {@code true} if this executor has been shut down.
     *
     * @return {@code true} if this executor has been shut down
     */
    boolean isShutdown();

    /**
     * Returns {@code true} if all tasks have completed following shut down.
     * Note that {@code isTerminated} is never {@code true} unless
     * either {@code shutdown} or {@code shutdownNow} was called first.
     *
     * @return {@code true} if all tasks have completed following shut down
     */
    boolean isTerminated();

    /**
     * Blocks until all tasks have completed execution after a shutdown
     * request, or the timeout occurs, or the current thread is
     * interrupted, whichever happens first.
     *
     * @param timeout the maximum time to wait
     * @param unit the time unit of the timeout argument
     * @return {@code true} if this executor terminated and
     *         {@code false} if the timeout elapsed before termination
     * @throws InterruptedException if interrupted while waiting
     */
    boolean awaitTermination(long timeout, TimeUnit unit)
        throws InterruptedException;

    /**
     * Submits a value-returning task for execution and returns a
     * Future representing the pending results of the task. The
     * Future's {@code get} method will return the task's result upon
     * successful completion.
     *
     * <p>
     * If you would like to immediately block waiting
     * for a task, you can use constructions of the form
     * {@code result = exec.submit(aCallable).get();}
     *
     * <p>Note: The {@link Executors} class includes a set of methods
     * that can convert some other common closure-like objects,
     * for example, {@link java.security.PrivilegedAction} to
     * {@link Callable} form so they can be submitted.
     *
     * @param task the task to submit
     * @param <T> the type of the task's result
     * @return a Future representing pending completion of the task
     * @throws RejectedExecutionException if the task cannot be
     *         scheduled for execution
     * @throws NullPointerException if the task is null
     */
    <T> Future<T> submit(Callable<T> task);

    /**
     * Submits a Runnable task for execution and returns a Future
     * representing that task. The Future's {@code get} method will
     * return the given result upon successful completion.
     *
     * @param task the task to submit
     * @param result the result to return
     * @param <T> the type of the result
     * @return a Future representing pending completion of the task
     * @throws RejectedExecutionException if the task cannot be
     *         scheduled for execution
     * @throws NullPointerException if the task is null
     */
    <T> Future<T> submit(Runnable task, T result);

    /**
     * Submits a Runnable task for execution and returns a Future
     * representing that task. The Future's {@code get} method will
     * return {@code null} upon <em>successful</em> completion.
     *
     * @param task the task to submit
     * @return a Future representing pending completion of the task
     * @throws RejectedExecutionException if the task cannot be
     *         scheduled for execution
     * @throws NullPointerException if the task is null
     */
    Future<?> submit(Runnable task);

    /**
     * Executes the given tasks, returning a list of Futures holding
     * their status and results when all complete.
     * {@link Future#isDone} is {@code true} for each
     * element of the returned list.
     * Note that a <em>completed</em> task could have
     * terminated either normally or by throwing an exception.
     * The results of this method are undefined if the given
     * collection is modified while this operation is in progress.
     *
     * @param tasks the collection of tasks
     * @param <T> the type of the values returned from the tasks
     * @return a list of Futures representing the tasks, in the same
     *         sequential order as produced by the iterator for the
     *         given task list, each of which has completed
     * @throws InterruptedException if interrupted while waiting, in
     *         which case unfinished tasks are cancelled
     * @throws NullPointerException if tasks or any of its elements are {@code null}
     * @throws RejectedExecutionException if any task cannot be
     *         scheduled for execution
     */
    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
        throws InterruptedException;

    /**
     * Executes the given tasks, returning a list of Futures holding
     * their status and results
     * when all complete or the timeout expires, whichever happens first.
     * {@link Future#isDone} is {@code true} for each
     * element of the returned list.
     * Upon return, tasks that have not completed are cancelled.
     * Note that a <em>completed</em> task could have
     * terminated either normally or by throwing an exception.
     * The results of this method are undefined if the given
     * collection is modified while this operation is in progress.
     *
     * @param tasks the collection of tasks
     * @param timeout the maximum time to wait
     * @param unit the time unit of the timeout argument
     * @param <T> the type of the values returned from the tasks
     * @return a list of Futures representing the tasks, in the same
     *         sequential order as produced by the iterator for the
     *         given task list. If the operation did not time out,
     *         each task will have completed. If it did time out, some
     *         of these tasks will not have completed.
     * @throws InterruptedException if interrupted while waiting, in
     *         which case unfinished tasks are cancelled
     * @throws NullPointerException if tasks, any of its elements, or
     *         unit are {@code null}
     * @throws RejectedExecutionException if any task cannot be scheduled
     *         for execution
     */
    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
                                  long timeout, TimeUnit unit)
        throws InterruptedException;

    /**
     * Executes the given tasks, returning the result
     * of one that has completed successfully (i.e., without throwing
     * an exception), if any do. Upon normal or exceptional return,
     * tasks that have not completed are cancelled.
     * The results of this method are undefined if the given
     * collection is modified while this operation is in progress.
     *
     * @param tasks the collection of tasks
     * @param <T> the type of the values returned from the tasks
     * @return the result returned by one of the tasks
     * @throws InterruptedException if interrupted while waiting
     * @throws NullPointerException if tasks or any element task
     *         subject to execution is {@code null}
     * @throws IllegalArgumentException if tasks is empty
     * @throws ExecutionException if no task successfully completes
     * @throws RejectedExecutionException if tasks cannot be scheduled
     *         for execution
     */
    <T> T invokeAny(Collection<? extends Callable<T>> tasks)
        throws InterruptedException, ExecutionException;

    /**
     * Executes the given tasks, returning the result
     * of one that has completed successfully (i.e., without throwing
     * an exception), if any do before the given timeout elapses.
     * Upon normal or exceptional return, tasks that have not
     * completed are cancelled.
     * The results of this method are undefined if the given
     * collection is modified while this operation is in progress.
     *
     * @param tasks the collection of tasks
     * @param timeout the maximum time to wait
     * @param unit the time unit of the timeout argument
     * @param <T> the type of the values returned from the tasks
     * @return the result returned by one of the tasks
     * @throws InterruptedException if interrupted while waiting
     * @throws NullPointerException if tasks, or unit, or any element
     *         task subject to execution is {@code null}
     * @throws TimeoutException if the given timeout elapses before
     *         any task successfully completes
     * @throws ExecutionException if no task successfully completes
     * @throws RejectedExecutionException if tasks cannot be scheduled
     *         for execution
     */
    <T> T invokeAny(Collection<? extends Callable<T>> tasks,
                    long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

 

3.1 常用4种线程池

3.1.1 newCachedThreadPool

创建一个可根据需要创建新线程的线程池,但是在之前构造的线程可用时将重用它们对于执行很多短期异步任务的程序,使用newCacheThreadPool可提高程序的性能。newCachedThreadPool调用execute 将重用以前构造的线程(如果线程可用),如果现有的线程没有可用的,则创建一个新线程并添加到线程池中。终止并从缓存中移除已有60秒中未被使用的线程。因此,长时间保持空闲线程不会使用任何资源。

点击查看代码
/**
     * Creates a thread pool that creates new threads as needed, but
     * will reuse previously constructed threads when they are
     * available.  These pools will typically improve the performance
     * of programs that execute many short-lived asynchronous tasks.
     * Calls to {@code execute} will reuse previously constructed
     * threads if available. If no existing thread is available, a new
     * thread will be created and added to the pool. Threads that have
     * not been used for sixty seconds are terminated and removed from
     * the cache. Thus, a pool that remains idle for long enough will
     * not consume any resources. Note that pools with similar
     * properties but different details (for example, timeout parameters)
     * may be created using {@link ThreadPoolExecutor} constructors.
     *
     * @return the newly created thread pool
     */
    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

	/**
     * Creates a {@code SynchronousQueue} with nonfair access policy.
     */
    public SynchronousQueue() {
        this(false);
    }


	/**
     * Creates a {@code SynchronousQueue} with the specified fairness policy.
     *
     * @param fair if true, waiting threads contend in FIFO order for
     *        access; otherwise the order is unspecified.
     */
    public SynchronousQueue(boolean fair) {
        transferer = fair ? new TransferQueue<E>() : new TransferStack<E>();
    }

 

SynchronousQueue源码如下:

点击查看代码
/*
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * This file is available under and governed by the GNU General Public
 * License version 2 only, as published by the Free Software Foundation.
 * However, the following notice accompanied the original version of this
 * file:
 *
 * Written by Doug Lea, Bill Scherer, and Michael Scott with
 * assistance from members of JCP JSR-166 Expert Group and released to
 * the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package java.util.concurrent;
import java.util.concurrent.locks.LockSupport;
import java.util.concurrent.locks.ReentrantLock;
import java.util.*;
import java.util.Spliterator;
import java.util.Spliterators;

/**
 * A {@linkplain BlockingQueue blocking queue} in which each insert
 * operation must wait for a corresponding remove operation by another
 * thread, and vice versa.  A synchronous queue does not have any
 * internal capacity, not even a capacity of one.  You cannot
 * {@code peek} at a synchronous queue because an element is only
 * present when you try to remove it; you cannot insert an element
 * (using any method) unless another thread is trying to remove it;
 * you cannot iterate as there is nothing to iterate.  The
 * <em>head</em> of the queue is the element that the first queued
 * inserting thread is trying to add to the queue; if there is no such
 * queued thread then no element is available for removal and
 * {@code poll()} will return {@code null}.  For purposes of other
 * {@code Collection} methods (for example {@code contains}), a
 * {@code SynchronousQueue} acts as an empty collection.  This queue
 * does not permit {@code null} elements.
 *
 * <p>Synchronous queues are similar to rendezvous channels used in
 * CSP and Ada. They are well suited for handoff designs, in which an
 * object running in one thread must sync up with an object running
 * in another thread in order to hand it some information, event, or
 * task.
 *
 * <p>This class supports an optional fairness policy for ordering
 * waiting producer and consumer threads.  By default, this ordering
 * is not guaranteed. However, a queue constructed with fairness set
 * to {@code true} grants threads access in FIFO order.
 *
 * <p>This class and its iterator implement all of the
 * <em>optional</em> methods of the {@link Collection} and {@link
 * Iterator} interfaces.
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @since 1.5
 * @author Doug Lea and Bill Scherer and Michael Scott
 * @param <E> the type of elements held in this collection
 */
public class SynchronousQueue<E> extends AbstractQueue<E>
    implements BlockingQueue<E>, java.io.Serializable {
    private static final long serialVersionUID = -3223113410248163686L;

    /*
     * This class implements extensions of the dual stack and dual
     * queue algorithms described in "Nonblocking Concurrent Objects
     * with Condition Synchronization", by W. N. Scherer III and
     * M. L. Scott.  18th Annual Conf. on Distributed Computing,
     * Oct. 2004 (see also
     * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
     * The (Lifo) stack is used for non-fair mode, and the (Fifo)
     * queue for fair mode. The performance of the two is generally
     * similar. Fifo usually supports higher throughput under
     * contention but Lifo maintains higher thread locality in common
     * applications.
     *
     * A dual queue (and similarly stack) is one that at any given
     * time either holds "data" -- items provided by put operations,
     * or "requests" -- slots representing take operations, or is
     * empty. A call to "fulfill" (i.e., a call requesting an item
     * from a queue holding data or vice versa) dequeues a
     * complementary node.  The most interesting feature of these
     * queues is that any operation can figure out which mode the
     * queue is in, and act accordingly without needing locks.
     *
     * Both the queue and stack extend abstract class Transferer
     * defining the single method transfer that does a put or a
     * take. These are unified into a single method because in dual
     * data structures, the put and take operations are symmetrical,
     * so nearly all code can be combined. The resulting transfer
     * methods are on the long side, but are easier to follow than
     * they would be if broken up into nearly-duplicated parts.
     *
     * The queue and stack data structures share many conceptual
     * similarities but very few concrete details. For simplicity,
     * they are kept distinct so that they can later evolve
     * separately.
     *
     * The algorithms here differ from the versions in the above paper
     * in extending them for use in synchronous queues, as well as
     * dealing with cancellation. The main differences include:
     *
     *  1. The original algorithms used bit-marked pointers, but
     *     the ones here use mode bits in nodes, leading to a number
     *     of further adaptations.
     *  2. SynchronousQueues must block threads waiting to become
     *     fulfilled.
     *  3. Support for cancellation via timeout and interrupts,
     *     including cleaning out cancelled nodes/threads
     *     from lists to avoid garbage retention and memory depletion.
     *
     * Blocking is mainly accomplished using LockSupport park/unpark,
     * except that nodes that appear to be the next ones to become
     * fulfilled first spin a bit (on multiprocessors only). On very
     * busy synchronous queues, spinning can dramatically improve
     * throughput. And on less busy ones, the amount of spinning is
     * small enough not to be noticeable.
     *
     * Cleaning is done in different ways in queues vs stacks.  For
     * queues, we can almost always remove a node immediately in O(1)
     * time (modulo retries for consistency checks) when it is
     * cancelled. But if it may be pinned as the current tail, it must
     * wait until some subsequent cancellation. For stacks, we need a
     * potentially O(n) traversal to be sure that we can remove the
     * node, but this can run concurrently with other threads
     * accessing the stack.
     *
     * While garbage collection takes care of most node reclamation
     * issues that otherwise complicate nonblocking algorithms, care
     * is taken to "forget" references to data, other nodes, and
     * threads that might be held on to long-term by blocked
     * threads. In cases where setting to null would otherwise
     * conflict with main algorithms, this is done by changing a
     * node's link to now point to the node itself. This doesn't arise
     * much for Stack nodes (because blocked threads do not hang on to
     * old head pointers), but references in Queue nodes must be
     * aggressively forgotten to avoid reachability of everything any
     * node has ever referred to since arrival.
     */

    /**
     * Shared internal API for dual stacks and queues.
     */
    abstract static class Transferer<E> {
        /**
         * Performs a put or take.
         *
         * @param e if non-null, the item to be handed to a consumer;
         *          if null, requests that transfer return an item
         *          offered by producer.
         * @param timed if this operation should timeout
         * @param nanos the timeout, in nanoseconds
         * @return if non-null, the item provided or received; if null,
         *         the operation failed due to timeout or interrupt --
         *         the caller can distinguish which of these occurred
         *         by checking Thread.interrupted.
         */
        abstract E transfer(E e, boolean timed, long nanos);
    }

    /** The number of CPUs, for spin control */
    static final int NCPUS = Runtime.getRuntime().availableProcessors();

    /**
     * The number of times to spin before blocking in timed waits.
     * The value is empirically derived -- it works well across a
     * variety of processors and OSes. Empirically, the best value
     * seems not to vary with number of CPUs (beyond 2) so is just
     * a constant.
     */
    static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;

    /**
     * The number of times to spin before blocking in untimed waits.
     * This is greater than timed value because untimed waits spin
     * faster since they don't need to check times on each spin.
     */
    static final int maxUntimedSpins = maxTimedSpins * 16;

    /**
     * The number of nanoseconds for which it is faster to spin
     * rather than to use timed park. A rough estimate suffices.
     */
    static final long spinForTimeoutThreshold = 1000L;

    /** Dual stack */
    static final class TransferStack<E> extends Transferer<E> {
        /*
         * This extends Scherer-Scott dual stack algorithm, differing,
         * among other ways, by using "covering" nodes rather than
         * bit-marked pointers: Fulfilling operations push on marker
         * nodes (with FULFILLING bit set in mode) to reserve a spot
         * to match a waiting node.
         */

        /* Modes for SNodes, ORed together in node fields */
        /** Node represents an unfulfilled consumer */
        static final int REQUEST    = 0;
        /** Node represents an unfulfilled producer */
        static final int DATA       = 1;
        /** Node is fulfilling another unfulfilled DATA or REQUEST */
        static final int FULFILLING = 2;

        /** Returns true if m has fulfilling bit set. */
        static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }

        /** Node class for TransferStacks. */
        static final class SNode {
            volatile SNode next;        // next node in stack
            volatile SNode match;       // the node matched to this
            volatile Thread waiter;     // to control park/unpark
            Object item;                // data; or null for REQUESTs
            int mode;
            // Note: item and mode fields don't need to be volatile
            // since they are always written before, and read after,
            // other volatile/atomic operations.

            SNode(Object item) {
                this.item = item;
            }

            boolean casNext(SNode cmp, SNode val) {
                return cmp == next &&
                    UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
            }

            /**
             * Tries to match node s to this node, if so, waking up thread.
             * Fulfillers call tryMatch to identify their waiters.
             * Waiters block until they have been matched.
             *
             * @param s the node to match
             * @return true if successfully matched to s
             */
            boolean tryMatch(SNode s) {
                if (match == null &&
                    UNSAFE.compareAndSwapObject(this, matchOffset, null, s)) {
                    Thread w = waiter;
                    if (w != null) {    // waiters need at most one unpark
                        waiter = null;
                        LockSupport.unpark(w);
                    }
                    return true;
                }
                return match == s;
            }

            /**
             * Tries to cancel a wait by matching node to itself.
             */
            void tryCancel() {
                UNSAFE.compareAndSwapObject(this, matchOffset, null, this);
            }

            boolean isCancelled() {
                return match == this;
            }

            // Unsafe mechanics
            private static final sun.misc.Unsafe UNSAFE;
            private static final long matchOffset;
            private static final long nextOffset;

            static {
                try {
                    UNSAFE = sun.misc.Unsafe.getUnsafe();
                    Class<?> k = SNode.class;
                    matchOffset = UNSAFE.objectFieldOffset
                        (k.getDeclaredField("match"));
                    nextOffset = UNSAFE.objectFieldOffset
                        (k.getDeclaredField("next"));
                } catch (Exception e) {
                    throw new Error(e);
                }
            }
        }

        /** The head (top) of the stack */
        volatile SNode head;

        boolean casHead(SNode h, SNode nh) {
            return h == head &&
                UNSAFE.compareAndSwapObject(this, headOffset, h, nh);
        }

        /**
         * Creates or resets fields of a node. Called only from transfer
         * where the node to push on stack is lazily created and
         * reused when possible to help reduce intervals between reads
         * and CASes of head and to avoid surges of garbage when CASes
         * to push nodes fail due to contention.
         */
        static SNode snode(SNode s, Object e, SNode next, int mode) {
            if (s == null) s = new SNode(e);
            s.mode = mode;
            s.next = next;
            return s;
        }

        /**
         * Puts or takes an item.
         */
        @SuppressWarnings("unchecked")
        E transfer(E e, boolean timed, long nanos) {
            /*
             * Basic algorithm is to loop trying one of three actions:
             *
             * 1. If apparently empty or already containing nodes of same
             *    mode, try to push node on stack and wait for a match,
             *    returning it, or null if cancelled.
             *
             * 2. If apparently containing node of complementary mode,
             *    try to push a fulfilling node on to stack, match
             *    with corresponding waiting node, pop both from
             *    stack, and return matched item. The matching or
             *    unlinking might not actually be necessary because of
             *    other threads performing action 3:
             *
             * 3. If top of stack already holds another fulfilling node,
             *    help it out by doing its match and/or pop
             *    operations, and then continue. The code for helping
             *    is essentially the same as for fulfilling, except
             *    that it doesn't return the item.
             */

            SNode s = null; // constructed/reused as needed
            int mode = (e == null) ? REQUEST : DATA;

            for (;;) {
                SNode h = head;
                if (h == null || h.mode == mode) {  // empty or same-mode
                    if (timed && nanos <= 0) {      // can't wait
                        if (h != null && h.isCancelled())
                            casHead(h, h.next);     // pop cancelled node
                        else
                            return null;
                    } else if (casHead(h, s = snode(s, e, h, mode))) {
                        SNode m = awaitFulfill(s, timed, nanos);
                        if (m == s) {               // wait was cancelled
                            clean(s);
                            return null;
                        }
                        if ((h = head) != null && h.next == s)
                            casHead(h, s.next);     // help s's fulfiller
                        return (E) ((mode == REQUEST) ? m.item : s.item);
                    }
                } else if (!isFulfilling(h.mode)) { // try to fulfill
                    if (h.isCancelled())            // already cancelled
                        casHead(h, h.next);         // pop and retry
                    else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
                        for (;;) { // loop until matched or waiters disappear
                            SNode m = s.next;       // m is s's match
                            if (m == null) {        // all waiters are gone
                                casHead(s, null);   // pop fulfill node
                                s = null;           // use new node next time
                                break;              // restart main loop
                            }
                            SNode mn = m.next;
                            if (m.tryMatch(s)) {
                                casHead(s, mn);     // pop both s and m
                                return (E) ((mode == REQUEST) ? m.item : s.item);
                            } else                  // lost match
                                s.casNext(m, mn);   // help unlink
                        }
                    }
                } else {                            // help a fulfiller
                    SNode m = h.next;               // m is h's match
                    if (m == null)                  // waiter is gone
                        casHead(h, null);           // pop fulfilling node
                    else {
                        SNode mn = m.next;
                        if (m.tryMatch(h))          // help match
                            casHead(h, mn);         // pop both h and m
                        else                        // lost match
                            h.casNext(m, mn);       // help unlink
                    }
                }
            }
        }

        /**
         * Spins/blocks until node s is matched by a fulfill operation.
         *
         * @param s the waiting node
         * @param timed true if timed wait
         * @param nanos timeout value
         * @return matched node, or s if cancelled
         */
        SNode awaitFulfill(SNode s, boolean timed, long nanos) {
            /*
             * When a node/thread is about to block, it sets its waiter
             * field and then rechecks state at least one more time
             * before actually parking, thus covering race vs
             * fulfiller noticing that waiter is non-null so should be
             * woken.
             *
             * When invoked by nodes that appear at the point of call
             * to be at the head of the stack, calls to park are
             * preceded by spins to avoid blocking when producers and
             * consumers are arriving very close in time.  This can
             * happen enough to bother only on multiprocessors.
             *
             * The order of checks for returning out of main loop
             * reflects fact that interrupts have precedence over
             * normal returns, which have precedence over
             * timeouts. (So, on timeout, one last check for match is
             * done before giving up.) Except that calls from untimed
             * SynchronousQueue.{poll/offer} don't check interrupts
             * and don't wait at all, so are trapped in transfer
             * method rather than calling awaitFulfill.
             */
            final long deadline = timed ? System.nanoTime() + nanos : 0L;
            Thread w = Thread.currentThread();
            int spins = (shouldSpin(s) ?
                         (timed ? maxTimedSpins : maxUntimedSpins) : 0);
            for (;;) {
                if (w.isInterrupted())
                    s.tryCancel();
                SNode m = s.match;
                if (m != null)
                    return m;
                if (timed) {
                    nanos = deadline - System.nanoTime();
                    if (nanos <= 0L) {
                        s.tryCancel();
                        continue;
                    }
                }
                if (spins > 0)
                    spins = shouldSpin(s) ? (spins-1) : 0;
                else if (s.waiter == null)
                    s.waiter = w; // establish waiter so can park next iter
                else if (!timed)
                    LockSupport.park(this);
                else if (nanos > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanos);
            }
        }

        /**
         * Returns true if node s is at head or there is an active
         * fulfiller.
         */
        boolean shouldSpin(SNode s) {
            SNode h = head;
            return (h == s || h == null || isFulfilling(h.mode));
        }

        /**
         * Unlinks s from the stack.
         */
        void clean(SNode s) {
            s.item = null;   // forget item
            s.waiter = null; // forget thread

            /*
             * At worst we may need to traverse entire stack to unlink
             * s. If there are multiple concurrent calls to clean, we
             * might not see s if another thread has already removed
             * it. But we can stop when we see any node known to
             * follow s. We use s.next unless it too is cancelled, in
             * which case we try the node one past. We don't check any
             * further because we don't want to doubly traverse just to
             * find sentinel.
             */

            SNode past = s.next;
            if (past != null && past.isCancelled())
                past = past.next;

            // Absorb cancelled nodes at head
            SNode p;
            while ((p = head) != null && p != past && p.isCancelled())
                casHead(p, p.next);

            // Unsplice embedded nodes
            while (p != null && p != past) {
                SNode n = p.next;
                if (n != null && n.isCancelled())
                    p.casNext(n, n.next);
                else
                    p = n;
            }
        }

        // Unsafe mechanics
        private static final sun.misc.Unsafe UNSAFE;
        private static final long headOffset;
        static {
            try {
                UNSAFE = sun.misc.Unsafe.getUnsafe();
                Class<?> k = TransferStack.class;
                headOffset = UNSAFE.objectFieldOffset
                    (k.getDeclaredField("head"));
            } catch (Exception e) {
                throw new Error(e);
            }
        }
    }

    /** Dual Queue */
    static final class TransferQueue<E> extends Transferer<E> {
        /*
         * This extends Scherer-Scott dual queue algorithm, differing,
         * among other ways, by using modes within nodes rather than
         * marked pointers. The algorithm is a little simpler than
         * that for stacks because fulfillers do not need explicit
         * nodes, and matching is done by CAS'ing QNode.item field
         * from non-null to null (for put) or vice versa (for take).
         */

        /** Node class for TransferQueue. */
        static final class QNode {
            volatile QNode next;          // next node in queue
            volatile Object item;         // CAS'ed to or from null
            volatile Thread waiter;       // to control park/unpark
            final boolean isData;

            QNode(Object item, boolean isData) {
                this.item = item;
                this.isData = isData;
            }

            boolean casNext(QNode cmp, QNode val) {
                return next == cmp &&
                    UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
            }

            boolean casItem(Object cmp, Object val) {
                return item == cmp &&
                    UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
            }

            /**
             * Tries to cancel by CAS'ing ref to this as item.
             */
            void tryCancel(Object cmp) {
                UNSAFE.compareAndSwapObject(this, itemOffset, cmp, this);
            }

            boolean isCancelled() {
                return item == this;
            }

            /**
             * Returns true if this node is known to be off the queue
             * because its next pointer has been forgotten due to
             * an advanceHead operation.
             */
            boolean isOffList() {
                return next == this;
            }

            // Unsafe mechanics
            private static final sun.misc.Unsafe UNSAFE;
            private static final long itemOffset;
            private static final long nextOffset;

            static {
                try {
                    UNSAFE = sun.misc.Unsafe.getUnsafe();
                    Class<?> k = QNode.class;
                    itemOffset = UNSAFE.objectFieldOffset
                        (k.getDeclaredField("item"));
                    nextOffset = UNSAFE.objectFieldOffset
                        (k.getDeclaredField("next"));
                } catch (Exception e) {
                    throw new Error(e);
                }
            }
        }

        /** Head of queue */
        transient volatile QNode head;
        /** Tail of queue */
        transient volatile QNode tail;
        /**
         * Reference to a cancelled node that might not yet have been
         * unlinked from queue because it was the last inserted node
         * when it was cancelled.
         */
        transient volatile QNode cleanMe;

        TransferQueue() {
            QNode h = new QNode(null, false); // initialize to dummy node.
            head = h;
            tail = h;
        }

        /**
         * Tries to cas nh as new head; if successful, unlink
         * old head's next node to avoid garbage retention.
         */
        void advanceHead(QNode h, QNode nh) {
            if (h == head &&
                UNSAFE.compareAndSwapObject(this, headOffset, h, nh))
                h.next = h; // forget old next
        }

        /**
         * Tries to cas nt as new tail.
         */
        void advanceTail(QNode t, QNode nt) {
            if (tail == t)
                UNSAFE.compareAndSwapObject(this, tailOffset, t, nt);
        }

        /**
         * Tries to CAS cleanMe slot.
         */
        boolean casCleanMe(QNode cmp, QNode val) {
            return cleanMe == cmp &&
                UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
        }

        /**
         * Puts or takes an item.
         */
        @SuppressWarnings("unchecked")
        E transfer(E e, boolean timed, long nanos) {
            /* Basic algorithm is to loop trying to take either of
             * two actions:
             *
             * 1. If queue apparently empty or holding same-mode nodes,
             *    try to add node to queue of waiters, wait to be
             *    fulfilled (or cancelled) and return matching item.
             *
             * 2. If queue apparently contains waiting items, and this
             *    call is of complementary mode, try to fulfill by CAS'ing
             *    item field of waiting node and dequeuing it, and then
             *    returning matching item.
             *
             * In each case, along the way, check for and try to help
             * advance head and tail on behalf of other stalled/slow
             * threads.
             *
             * The loop starts off with a null check guarding against
             * seeing uninitialized head or tail values. This never
             * happens in current SynchronousQueue, but could if
             * callers held non-volatile/final ref to the
             * transferer. The check is here anyway because it places
             * null checks at top of loop, which is usually faster
             * than having them implicitly interspersed.
             */

            QNode s = null; // constructed/reused as needed
            boolean isData = (e != null);

            for (;;) {
                QNode t = tail;
                QNode h = head;
                if (t == null || h == null)         // saw uninitialized value
                    continue;                       // spin

                if (h == t || t.isData == isData) { // empty or same-mode
                    QNode tn = t.next;
                    if (t != tail)                  // inconsistent read
                        continue;
                    if (tn != null) {               // lagging tail
                        advanceTail(t, tn);
                        continue;
                    }
                    if (timed && nanos <= 0)        // can't wait
                        return null;
                    if (s == null)
                        s = new QNode(e, isData);
                    if (!t.casNext(null, s))        // failed to link in
                        continue;

                    advanceTail(t, s);              // swing tail and wait
                    Object x = awaitFulfill(s, e, timed, nanos);
                    if (x == s) {                   // wait was cancelled
                        clean(t, s);
                        return null;
                    }

                    if (!s.isOffList()) {           // not already unlinked
                        advanceHead(t, s);          // unlink if head
                        if (x != null)              // and forget fields
                            s.item = s;
                        s.waiter = null;
                    }
                    return (x != null) ? (E)x : e;

                } else {                            // complementary-mode
                    QNode m = h.next;               // node to fulfill
                    if (t != tail || m == null || h != head)
                        continue;                   // inconsistent read

                    Object x = m.item;
                    if (isData == (x != null) ||    // m already fulfilled
                        x == m ||                   // m cancelled
                        !m.casItem(x, e)) {         // lost CAS
                        advanceHead(h, m);          // dequeue and retry
                        continue;
                    }

                    advanceHead(h, m);              // successfully fulfilled
                    LockSupport.unpark(m.waiter);
                    return (x != null) ? (E)x : e;
                }
            }
        }

        /**
         * Spins/blocks until node s is fulfilled.
         *
         * @param s the waiting node
         * @param e the comparison value for checking match
         * @param timed true if timed wait
         * @param nanos timeout value
         * @return matched item, or s if cancelled
         */
        Object awaitFulfill(QNode s, E e, boolean timed, long nanos) {
            /* Same idea as TransferStack.awaitFulfill */
            final long deadline = timed ? System.nanoTime() + nanos : 0L;
            Thread w = Thread.currentThread();
            int spins = ((head.next == s) ?
                         (timed ? maxTimedSpins : maxUntimedSpins) : 0);
            for (;;) {
                if (w.isInterrupted())
                    s.tryCancel(e);
                Object x = s.item;
                if (x != e)
                    return x;
                if (timed) {
                    nanos = deadline - System.nanoTime();
                    if (nanos <= 0L) {
                        s.tryCancel(e);
                        continue;
                    }
                }
                if (spins > 0)
                    --spins;
                else if (s.waiter == null)
                    s.waiter = w;
                else if (!timed)
                    LockSupport.park(this);
                else if (nanos > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanos);
            }
        }

        /**
         * Gets rid of cancelled node s with original predecessor pred.
         */
        void clean(QNode pred, QNode s) {
            s.waiter = null; // forget thread
            /*
             * At any given time, exactly one node on list cannot be
             * deleted -- the last inserted node. To accommodate this,
             * if we cannot delete s, we save its predecessor as
             * "cleanMe", deleting the previously saved version
             * first. At least one of node s or the node previously
             * saved can always be deleted, so this always terminates.
             */
            while (pred.next == s) { // Return early if already unlinked
                QNode h = head;
                QNode hn = h.next;   // Absorb cancelled first node as head
                if (hn != null && hn.isCancelled()) {
                    advanceHead(h, hn);
                    continue;
                }
                QNode t = tail;      // Ensure consistent read for tail
                if (t == h)
                    return;
                QNode tn = t.next;
                if (t != tail)
                    continue;
                if (tn != null) {
                    advanceTail(t, tn);
                    continue;
                }
                if (s != t) {        // If not tail, try to unsplice
                    QNode sn = s.next;
                    if (sn == s || pred.casNext(s, sn))
                        return;
                }
                QNode dp = cleanMe;
                if (dp != null) {    // Try unlinking previous cancelled node
                    QNode d = dp.next;
                    QNode dn;
                    if (d == null ||               // d is gone or
                        d == dp ||                 // d is off list or
                        !d.isCancelled() ||        // d not cancelled or
                        (d != t &&                 // d not tail and
                         (dn = d.next) != null &&  //   has successor
                         dn != d &&                //   that is on list
                         dp.casNext(d, dn)))       // d unspliced
                        casCleanMe(dp, null);
                    if (dp == pred)
                        return;      // s is already saved node
                } else if (casCleanMe(null, pred))
                    return;          // Postpone cleaning s
            }
        }

        private static final sun.misc.Unsafe UNSAFE;
        private static final long headOffset;
        private static final long tailOffset;
        private static final long cleanMeOffset;
        static {
            try {
                UNSAFE = sun.misc.Unsafe.getUnsafe();
                Class<?> k = TransferQueue.class;
                headOffset = UNSAFE.objectFieldOffset
                    (k.getDeclaredField("head"));
                tailOffset = UNSAFE.objectFieldOffset
                    (k.getDeclaredField("tail"));
                cleanMeOffset = UNSAFE.objectFieldOffset
                    (k.getDeclaredField("cleanMe"));
            } catch (Exception e) {
                throw new Error(e);
            }
        }
    }

    /**
     * The transferer. Set only in constructor, but cannot be declared
     * as final without further complicating serialization.  Since
     * this is accessed only at most once per public method, there
     * isn't a noticeable performance penalty for using volatile
     * instead of final here.
     */
    private transient volatile Transferer<E> transferer;

    /**
     * Creates a {@code SynchronousQueue} with nonfair access policy.
     */
    public SynchronousQueue() {
        this(false);
    }

    /**
     * Creates a {@code SynchronousQueue} with the specified fairness policy.
     *
     * @param fair if true, waiting threads contend in FIFO order for
     *        access; otherwise the order is unspecified.
     */
    public SynchronousQueue(boolean fair) {
        transferer = fair ? new TransferQueue<E>() : new TransferStack<E>();
    }

    /**
     * Adds the specified element to this queue, waiting if necessary for
     * another thread to receive it.
     *
     * @throws InterruptedException {@inheritDoc}
     * @throws NullPointerException {@inheritDoc}
     */
    public void put(E e) throws InterruptedException {
        if (e == null) throw new NullPointerException();
        if (transferer.transfer(e, false, 0) == null) {
            Thread.interrupted();
            throw new InterruptedException();
        }
    }

    /**
     * Inserts the specified element into this queue, waiting if necessary
     * up to the specified wait time for another thread to receive it.
     *
     * @return {@code true} if successful, or {@code false} if the
     *         specified waiting time elapses before a consumer appears
     * @throws InterruptedException {@inheritDoc}
     * @throws NullPointerException {@inheritDoc}
     */
    public boolean offer(E e, long timeout, TimeUnit unit)
        throws InterruptedException {
        if (e == null) throw new NullPointerException();
        if (transferer.transfer(e, true, unit.toNanos(timeout)) != null)
            return true;
        if (!Thread.interrupted())
            return false;
        throw new InterruptedException();
    }

    /**
     * Inserts the specified element into this queue, if another thread is
     * waiting to receive it.
     *
     * @param e the element to add
     * @return {@code true} if the element was added to this queue, else
     *         {@code false}
     * @throws NullPointerException if the specified element is null
     */
    public boolean offer(E e) {
        if (e == null) throw new NullPointerException();
        return transferer.transfer(e, true, 0) != null;
    }

    /**
     * Retrieves and removes the head of this queue, waiting if necessary
     * for another thread to insert it.
     *
     * @return the head of this queue
     * @throws InterruptedException {@inheritDoc}
     */
    public E take() throws InterruptedException {
        E e = transferer.transfer(null, false, 0);
        if (e != null)
            return e;
        Thread.interrupted();
        throw new InterruptedException();
    }

    /**
     * Retrieves and removes the head of this queue, waiting
     * if necessary up to the specified wait time, for another thread
     * to insert it.
     *
     * @return the head of this queue, or {@code null} if the
     *         specified waiting time elapses before an element is present
     * @throws InterruptedException {@inheritDoc}
     */
    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
        E e = transferer.transfer(null, true, unit.toNanos(timeout));
        if (e != null || !Thread.interrupted())
            return e;
        throw new InterruptedException();
    }

    /**
     * Retrieves and removes the head of this queue, if another thread
     * is currently making an element available.
     *
     * @return the head of this queue, or {@code null} if no
     *         element is available
     */
    public E poll() {
        return transferer.transfer(null, true, 0);
    }

    /**
     * Always returns {@code true}.
     * A {@code SynchronousQueue} has no internal capacity.
     *
     * @return {@code true}
     */
    public boolean isEmpty() {
        return true;
    }

    /**
     * Always returns zero.
     * A {@code SynchronousQueue} has no internal capacity.
     *
     * @return zero
     */
    public int size() {
        return 0;
    }

    /**
     * Always returns zero.
     * A {@code SynchronousQueue} has no internal capacity.
     *
     * @return zero
     */
    public int remainingCapacity() {
        return 0;
    }

    /**
     * Does nothing.
     * A {@code SynchronousQueue} has no internal capacity.
     */
    public void clear() {
    }

    /**
     * Always returns {@code false}.
     * A {@code SynchronousQueue} has no internal capacity.
     *
     * @param o the element
     * @return {@code false}
     */
    public boolean contains(Object o) {
        return false;
    }

    /**
     * Always returns {@code false}.
     * A {@code SynchronousQueue} has no internal capacity.
     *
     * @param o the element to remove
     * @return {@code false}
     */
    public boolean remove(Object o) {
        return false;
    }

    /**
     * Returns {@code false} unless the given collection is empty.
     * A {@code SynchronousQueue} has no internal capacity.
     *
     * @param c the collection
     * @return {@code false} unless given collection is empty
     */
    public boolean containsAll(Collection<?> c) {
        return c.isEmpty();
    }

    /**
     * Always returns {@code false}.
     * A {@code SynchronousQueue} has no internal capacity.
     *
     * @param c the collection
     * @return {@code false}
     */
    public boolean removeAll(Collection<?> c) {
        return false;
    }

    /**
     * Always returns {@code false}.
     * A {@code SynchronousQueue} has no internal capacity.
     *
     * @param c the collection
     * @return {@code false}
     */
    public boolean retainAll(Collection<?> c) {
        return false;
    }

    /**
     * Always returns {@code null}.
     * A {@code SynchronousQueue} does not return elements
     * unless actively waited on.
     *
     * @return {@code null}
     */
    public E peek() {
        return null;
    }

    /**
     * Returns an empty iterator in which {@code hasNext} always returns
     * {@code false}.
     *
     * @return an empty iterator
     */
    public Iterator<E> iterator() {
        return Collections.emptyIterator();
    }

    /**
     * Returns an empty spliterator in which calls to
     * {@link java.util.Spliterator#trySplit()} always return {@code null}.
     *
     * @return an empty spliterator
     * @since 1.8
     */
    public Spliterator<E> spliterator() {
        return Spliterators.emptySpliterator();
    }

    /**
     * Returns a zero-length array.
     * @return a zero-length array
     */
    public Object[] toArray() {
        return new Object[0];
    }

    /**
     * Sets the zeroeth element of the specified array to {@code null}
     * (if the array has non-zero length) and returns it.
     *
     * @param a the array
     * @return the specified array
     * @throws NullPointerException if the specified array is null
     */
    public <T> T[] toArray(T[] a) {
        if (a.length > 0)
            a[0] = null;
        return a;
    }

    /**
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @throws IllegalArgumentException      {@inheritDoc}
     */
    public int drainTo(Collection<? super E> c) {
        if (c == null)
            throw new NullPointerException();
        if (c == this)
            throw new IllegalArgumentException();
        int n = 0;
        for (E e; (e = poll()) != null;) {
            c.add(e);
            ++n;
        }
        return n;
    }

    /**
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @throws IllegalArgumentException      {@inheritDoc}
     */
    public int drainTo(Collection<? super E> c, int maxElements) {
        if (c == null)
            throw new NullPointerException();
        if (c == this)
            throw new IllegalArgumentException();
        int n = 0;
        for (E e; n < maxElements && (e = poll()) != null;) {
            c.add(e);
            ++n;
        }
        return n;
    }

    /*
     * To cope with serialization strategy in the 1.5 version of
     * SynchronousQueue, we declare some unused classes and fields
     * that exist solely to enable serializability across versions.
     * These fields are never used, so are initialized only if this
     * object is ever serialized or deserialized.
     */

    @SuppressWarnings("serial")
    static class WaitQueue implements java.io.Serializable { }
    static class LifoWaitQueue extends WaitQueue {
        private static final long serialVersionUID = -3633113410248163686L;
    }
    static class FifoWaitQueue extends WaitQueue {
        private static final long serialVersionUID = -3623113410248163686L;
    }
    private ReentrantLock qlock;
    private WaitQueue waitingProducers;
    private WaitQueue waitingConsumers;

    /**
     * Saves this queue to a stream (that is, serializes it).
     * @param s the stream
     * @throws java.io.IOException if an I/O error occurs
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        boolean fair = transferer instanceof TransferQueue;
        if (fair) {
            qlock = new ReentrantLock(true);
            waitingProducers = new FifoWaitQueue();
            waitingConsumers = new FifoWaitQueue();
        }
        else {
            qlock = new ReentrantLock();
            waitingProducers = new LifoWaitQueue();
            waitingConsumers = new LifoWaitQueue();
        }
        s.defaultWriteObject();
    }

    /**
     * Reconstitutes this queue from a stream (that is, deserializes it).
     * @param s the stream
     * @throws ClassNotFoundException if the class of a serialized object
     *         could not be found
     * @throws java.io.IOException if an I/O error occurs
     */
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        s.defaultReadObject();
        if (waitingProducers instanceof FifoWaitQueue)
            transferer = new TransferQueue<E>();
        else
            transferer = new TransferStack<E>();
    }

    // Unsafe mechanics
    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
                                  String field, Class<?> klazz) {
        try {
            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
        } catch (NoSuchFieldException e) {
            // Convert Exception to corresponding Error
            NoSuchFieldError error = new NoSuchFieldError(field);
            error.initCause(e);
            throw error;
        }
    }

}

 

3.1.2 newFixedThreadPool

创建一个可重用的固定线程数的线程池,以共享的无界队列方式来运行这些线程。在任意点,大多数线程nThreads线程会处于任务的活动状态。如果所有的线程处于活动状态的时候提交附加任务,则在有可用线程之前,附加任务将在队列中等待。如果在关闭前的执行期间由于失败导致任何线程终止,那么一个新线程将代替它执行后续的任务(如果需要)。在某个线程被显示地关闭之前,线程池中将一直存在。

点击查看代码
/**
     * Creates a thread pool that reuses a fixed number of threads
     * operating off a shared unbounded queue.  At any point, at most
     * {@code nThreads} threads will be active processing tasks.
     * If additional tasks are submitted when all threads are active,
     * they will wait in the queue until a thread is available.
     * If any thread terminates due to a failure during execution
     * prior to shutdown, a new one will take its place if needed to
     * execute subsequent tasks.  The threads in the pool will exist
     * until it is explicitly {@link ExecutorService#shutdown shutdown}.
     *
     * @param nThreads the number of threads in the pool
     * @return the newly created thread pool
     * @throws IllegalArgumentException if {@code nThreads <= 0}
     */
    public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }


	/**
     * Creates a {@code LinkedBlockingQueue} with a capacity of
     * {@link Integer#MAX_VALUE}.
     */
    public LinkedBlockingQueue() {
        this(Integer.MAX_VALUE);
    }

	/**
     * Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.
     *
     * @param capacity the capacity of this queue
     * @throws IllegalArgumentException if {@code capacity} is not greater
     *         than zero
     */
    public LinkedBlockingQueue(int capacity) {
        if (capacity <= 0) throw new IllegalArgumentException();
        this.capacity = capacity;
        last = head = new Node<E>(null);
    }

 

LinkedBlockingQueue阻塞队列源码如下:

点击查看代码
/*
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * This file is available under and governed by the GNU General Public
 * License version 2 only, as published by the Free Software Foundation.
 * However, the following notice accompanied the original version of this
 * file:
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package java.util.concurrent;

import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
import java.util.AbstractQueue;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.Consumer;

/**
 * An optionally-bounded {@linkplain BlockingQueue blocking queue} based on
 * linked nodes.
 * This queue orders elements FIFO (first-in-first-out).
 * The <em>head</em> of the queue is that element that has been on the
 * queue the longest time.
 * The <em>tail</em> of the queue is that element that has been on the
 * queue the shortest time. New elements
 * are inserted at the tail of the queue, and the queue retrieval
 * operations obtain elements at the head of the queue.
 * Linked queues typically have higher throughput than array-based queues but
 * less predictable performance in most concurrent applications.
 *
 * <p>The optional capacity bound constructor argument serves as a
 * way to prevent excessive queue expansion. The capacity, if unspecified,
 * is equal to {@link Integer#MAX_VALUE}.  Linked nodes are
 * dynamically created upon each insertion unless this would bring the
 * queue above capacity.
 *
 * <p>This class and its iterator implement all of the
 * <em>optional</em> methods of the {@link Collection} and {@link
 * Iterator} interfaces.
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @since 1.5
 * @author Doug Lea
 * @param <E> the type of elements held in this collection
 */
public class LinkedBlockingQueue<E> extends AbstractQueue<E>
        implements BlockingQueue<E>, java.io.Serializable {
    private static final long serialVersionUID = -6903933977591709194L;

    /*
     * A variant of the "two lock queue" algorithm.  The putLock gates
     * entry to put (and offer), and has an associated condition for
     * waiting puts.  Similarly for the takeLock.  The "count" field
     * that they both rely on is maintained as an atomic to avoid
     * needing to get both locks in most cases. Also, to minimize need
     * for puts to get takeLock and vice-versa, cascading notifies are
     * used. When a put notices that it has enabled at least one take,
     * it signals taker. That taker in turn signals others if more
     * items have been entered since the signal. And symmetrically for
     * takes signalling puts. Operations such as remove(Object) and
     * iterators acquire both locks.
     *
     * Visibility between writers and readers is provided as follows:
     *
     * Whenever an element is enqueued, the putLock is acquired and
     * count updated.  A subsequent reader guarantees visibility to the
     * enqueued Node by either acquiring the putLock (via fullyLock)
     * or by acquiring the takeLock, and then reading n = count.get();
     * this gives visibility to the first n items.
     *
     * To implement weakly consistent iterators, it appears we need to
     * keep all Nodes GC-reachable from a predecessor dequeued Node.
     * That would cause two problems:
     * - allow a rogue Iterator to cause unbounded memory retention
     * - cause cross-generational linking of old Nodes to new Nodes if
     *   a Node was tenured while live, which generational GCs have a
     *   hard time dealing with, causing repeated major collections.
     * However, only non-deleted Nodes need to be reachable from
     * dequeued Nodes, and reachability does not necessarily have to
     * be of the kind understood by the GC.  We use the trick of
     * linking a Node that has just been dequeued to itself.  Such a
     * self-link implicitly means to advance to head.next.
     */

    /**
     * Linked list node class
     */
    static class Node<E> {
        E item;

        /**
         * One of:
         * - the real successor Node
         * - this Node, meaning the successor is head.next
         * - null, meaning there is no successor (this is the last node)
         */
        Node<E> next;

        Node(E x) { item = x; }
    }

    /** The capacity bound, or Integer.MAX_VALUE if none */
    private final int capacity;

    /** Current number of elements */
    private final AtomicInteger count = new AtomicInteger();

    /**
     * Head of linked list.
     * Invariant: head.item == null
     */
    transient Node<E> head;

    /**
     * Tail of linked list.
     * Invariant: last.next == null
     */
    private transient Node<E> last;

    /** Lock held by take, poll, etc */
    private final ReentrantLock takeLock = new ReentrantLock();

    /** Wait queue for waiting takes */
    private final Condition notEmpty = takeLock.newCondition();

    /** Lock held by put, offer, etc */
    private final ReentrantLock putLock = new ReentrantLock();

    /** Wait queue for waiting puts */
    private final Condition notFull = putLock.newCondition();

    /**
     * Signals a waiting take. Called only from put/offer (which do not
     * otherwise ordinarily lock takeLock.)
     */
    private void signalNotEmpty() {
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lock();
        try {
            notEmpty.signal();
        } finally {
            takeLock.unlock();
        }
    }

    /**
     * Signals a waiting put. Called only from take/poll.
     */
    private void signalNotFull() {
        final ReentrantLock putLock = this.putLock;
        putLock.lock();
        try {
            notFull.signal();
        } finally {
            putLock.unlock();
        }
    }

    /**
     * Links node at end of queue.
     *
     * @param node the node
     */
    private void enqueue(Node<E> node) {
        // assert putLock.isHeldByCurrentThread();
        // assert last.next == null;
        last = last.next = node;
    }

    /**
     * Removes a node from head of queue.
     *
     * @return the node
     */
    private E dequeue() {
        // assert takeLock.isHeldByCurrentThread();
        // assert head.item == null;
        Node<E> h = head;
        Node<E> first = h.next;
        h.next = h; // help GC
        head = first;
        E x = first.item;
        first.item = null;
        return x;
    }

    /**
     * Locks to prevent both puts and takes.
     */
    void fullyLock() {
        putLock.lock();
        takeLock.lock();
    }

    /**
     * Unlocks to allow both puts and takes.
     */
    void fullyUnlock() {
        takeLock.unlock();
        putLock.unlock();
    }

//     /**
//      * Tells whether both locks are held by current thread.
//      */
//     boolean isFullyLocked() {
//         return (putLock.isHeldByCurrentThread() &&
//                 takeLock.isHeldByCurrentThread());
//     }

    /**
     * Creates a {@code LinkedBlockingQueue} with a capacity of
     * {@link Integer#MAX_VALUE}.
     */
    public LinkedBlockingQueue() {
        this(Integer.MAX_VALUE);
    }

    /**
     * Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.
     *
     * @param capacity the capacity of this queue
     * @throws IllegalArgumentException if {@code capacity} is not greater
     *         than zero
     */
    public LinkedBlockingQueue(int capacity) {
        if (capacity <= 0) throw new IllegalArgumentException();
        this.capacity = capacity;
        last = head = new Node<E>(null);
    }

    /**
     * Creates a {@code LinkedBlockingQueue} with a capacity of
     * {@link Integer#MAX_VALUE}, initially containing the elements of the
     * given collection,
     * added in traversal order of the collection's iterator.
     *
     * @param c the collection of elements to initially contain
     * @throws NullPointerException if the specified collection or any
     *         of its elements are null
     */
    public LinkedBlockingQueue(Collection<? extends E> c) {
        this(Integer.MAX_VALUE);
        final ReentrantLock putLock = this.putLock;
        putLock.lock(); // Never contended, but necessary for visibility
        try {
            int n = 0;
            for (E e : c) {
                if (e == null)
                    throw new NullPointerException();
                if (n == capacity)
                    throw new IllegalStateException("Queue full");
                enqueue(new Node<E>(e));
                ++n;
            }
            count.set(n);
        } finally {
            putLock.unlock();
        }
    }

    // this doc comment is overridden to remove the reference to collections
    // greater in size than Integer.MAX_VALUE
    /**
     * Returns the number of elements in this queue.
     *
     * @return the number of elements in this queue
     */
    public int size() {
        return count.get();
    }

    // this doc comment is a modified copy of the inherited doc comment,
    // without the reference to unlimited queues.
    /**
     * Returns the number of additional elements that this queue can ideally
     * (in the absence of memory or resource constraints) accept without
     * blocking. This is always equal to the initial capacity of this queue
     * less the current {@code size} of this queue.
     *
     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
     * an element will succeed by inspecting {@code remainingCapacity}
     * because it may be the case that another thread is about to
     * insert or remove an element.
     */
    public int remainingCapacity() {
        return capacity - count.get();
    }

    /**
     * Inserts the specified element at the tail of this queue, waiting if
     * necessary for space to become available.
     *
     * @throws InterruptedException {@inheritDoc}
     * @throws NullPointerException {@inheritDoc}
     */
    public void put(E e) throws InterruptedException {
        if (e == null) throw new NullPointerException();
        // Note: convention in all put/take/etc is to preset local var
        // holding count negative to indicate failure unless set.
        int c = -1;
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock;
        final AtomicInteger count = this.count;
        putLock.lockInterruptibly();
        try {
            /*
             * Note that count is used in wait guard even though it is
             * not protected by lock. This works because count can
             * only decrease at this point (all other puts are shut
             * out by lock), and we (or some other waiting put) are
             * signalled if it ever changes from capacity. Similarly
             * for all other uses of count in other wait guards.
             */
            while (count.get() == capacity) {
                notFull.await();
            }
            enqueue(node);
            c = count.getAndIncrement();
            if (c + 1 < capacity)
                notFull.signal();
        } finally {
            putLock.unlock();
        }
        if (c == 0)
            signalNotEmpty();
    }

    /**
     * Inserts the specified element at the tail of this queue, waiting if
     * necessary up to the specified wait time for space to become available.
     *
     * @return {@code true} if successful, or {@code false} if
     *         the specified waiting time elapses before space is available
     * @throws InterruptedException {@inheritDoc}
     * @throws NullPointerException {@inheritDoc}
     */
    public boolean offer(E e, long timeout, TimeUnit unit)
        throws InterruptedException {

        if (e == null) throw new NullPointerException();
        long nanos = unit.toNanos(timeout);
        int c = -1;
        final ReentrantLock putLock = this.putLock;
        final AtomicInteger count = this.count;
        putLock.lockInterruptibly();
        try {
            while (count.get() == capacity) {
                if (nanos <= 0)
                    return false;
                nanos = notFull.awaitNanos(nanos);
            }
            enqueue(new Node<E>(e));
            c = count.getAndIncrement();
            if (c + 1 < capacity)
                notFull.signal();
        } finally {
            putLock.unlock();
        }
        if (c == 0)
            signalNotEmpty();
        return true;
    }

    /**
     * Inserts the specified element at the tail of this queue if it is
     * possible to do so immediately without exceeding the queue's capacity,
     * returning {@code true} upon success and {@code false} if this queue
     * is full.
     * When using a capacity-restricted queue, this method is generally
     * preferable to method {@link BlockingQueue#add add}, which can fail to
     * insert an element only by throwing an exception.
     *
     * @throws NullPointerException if the specified element is null
     */
    public boolean offer(E e) {
        if (e == null) throw new NullPointerException();
        final AtomicInteger count = this.count;
        if (count.get() == capacity)
            return false;
        int c = -1;
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock;
        putLock.lock();
        try {
            if (count.get() < capacity) {
                enqueue(node);
                c = count.getAndIncrement();
                if (c + 1 < capacity)
                    notFull.signal();
            }
        } finally {
            putLock.unlock();
        }
        if (c == 0)
            signalNotEmpty();
        return c >= 0;
    }

    public E take() throws InterruptedException {
        E x;
        int c = -1;
        final AtomicInteger count = this.count;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lockInterruptibly();
        try {
            while (count.get() == 0) {
                notEmpty.await();
            }
            x = dequeue();
            c = count.getAndDecrement();
            if (c > 1)
                notEmpty.signal();
        } finally {
            takeLock.unlock();
        }
        if (c == capacity)
            signalNotFull();
        return x;
    }

    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
        E x = null;
        int c = -1;
        long nanos = unit.toNanos(timeout);
        final AtomicInteger count = this.count;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lockInterruptibly();
        try {
            while (count.get() == 0) {
                if (nanos <= 0)
                    return null;
                nanos = notEmpty.awaitNanos(nanos);
            }
            x = dequeue();
            c = count.getAndDecrement();
            if (c > 1)
                notEmpty.signal();
        } finally {
            takeLock.unlock();
        }
        if (c == capacity)
            signalNotFull();
        return x;
    }

    public E poll() {
        final AtomicInteger count = this.count;
        if (count.get() == 0)
            return null;
        E x = null;
        int c = -1;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lock();
        try {
            if (count.get() > 0) {
                x = dequeue();
                c = count.getAndDecrement();
                if (c > 1)
                    notEmpty.signal();
            }
        } finally {
            takeLock.unlock();
        }
        if (c == capacity)
            signalNotFull();
        return x;
    }

    public E peek() {
        if (count.get() == 0)
            return null;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lock();
        try {
            Node<E> first = head.next;
            if (first == null)
                return null;
            else
                return first.item;
        } finally {
            takeLock.unlock();
        }
    }

    /**
     * Unlinks interior Node p with predecessor trail.
     */
    void unlink(Node<E> p, Node<E> trail) {
        // assert isFullyLocked();
        // p.next is not changed, to allow iterators that are
        // traversing p to maintain their weak-consistency guarantee.
        p.item = null;
        trail.next = p.next;
        if (last == p)
            last = trail;
        if (count.getAndDecrement() == capacity)
            notFull.signal();
    }

    /**
     * Removes a single instance of the specified element from this queue,
     * if it is present.  More formally, removes an element {@code e} such
     * that {@code o.equals(e)}, if this queue contains one or more such
     * elements.
     * Returns {@code true} if this queue contained the specified element
     * (or equivalently, if this queue changed as a result of the call).
     *
     * @param o element to be removed from this queue, if present
     * @return {@code true} if this queue changed as a result of the call
     */
    public boolean remove(Object o) {
        if (o == null) return false;
        fullyLock();
        try {
            for (Node<E> trail = head, p = trail.next;
                 p != null;
                 trail = p, p = p.next) {
                if (o.equals(p.item)) {
                    unlink(p, trail);
                    return true;
                }
            }
            return false;
        } finally {
            fullyUnlock();
        }
    }

    /**
     * Returns {@code true} if this queue contains the specified element.
     * More formally, returns {@code true} if and only if this queue contains
     * at least one element {@code e} such that {@code o.equals(e)}.
     *
     * @param o object to be checked for containment in this queue
     * @return {@code true} if this queue contains the specified element
     */
    public boolean contains(Object o) {
        if (o == null) return false;
        fullyLock();
        try {
            for (Node<E> p = head.next; p != null; p = p.next)
                if (o.equals(p.item))
                    return true;
            return false;
        } finally {
            fullyUnlock();
        }
    }

    /**
     * Returns an array containing all of the elements in this queue, in
     * proper sequence.
     *
     * <p>The returned array will be "safe" in that no references to it are
     * maintained by this queue.  (In other words, this method must allocate
     * a new array).  The caller is thus free to modify the returned array.
     *
     * <p>This method acts as bridge between array-based and collection-based
     * APIs.
     *
     * @return an array containing all of the elements in this queue
     */
    public Object[] toArray() {
        fullyLock();
        try {
            int size = count.get();
            Object[] a = new Object[size];
            int k = 0;
            for (Node<E> p = head.next; p != null; p = p.next)
                a[k++] = p.item;
            return a;
        } finally {
            fullyUnlock();
        }
    }

    /**
     * Returns an array containing all of the elements in this queue, in
     * proper sequence; the runtime type of the returned array is that of
     * the specified array.  If the queue fits in the specified array, it
     * is returned therein.  Otherwise, a new array is allocated with the
     * runtime type of the specified array and the size of this queue.
     *
     * <p>If this queue fits in the specified array with room to spare
     * (i.e., the array has more elements than this queue), the element in
     * the array immediately following the end of the queue is set to
     * {@code null}.
     *
     * <p>Like the {@link #toArray()} method, this method acts as bridge between
     * array-based and collection-based APIs.  Further, this method allows
     * precise control over the runtime type of the output array, and may,
     * under certain circumstances, be used to save allocation costs.
     *
     * <p>Suppose {@code x} is a queue known to contain only strings.
     * The following code can be used to dump the queue into a newly
     * allocated array of {@code String}:
     *
     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
     *
     * Note that {@code toArray(new Object[0])} is identical in function to
     * {@code toArray()}.
     *
     * @param a the array into which the elements of the queue are to
     *          be stored, if it is big enough; otherwise, a new array of the
     *          same runtime type is allocated for this purpose
     * @return an array containing all of the elements in this queue
     * @throws ArrayStoreException if the runtime type of the specified array
     *         is not a supertype of the runtime type of every element in
     *         this queue
     * @throws NullPointerException if the specified array is null
     */
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
        fullyLock();
        try {
            int size = count.get();
            if (a.length < size)
                a = (T[])java.lang.reflect.Array.newInstance
                    (a.getClass().getComponentType(), size);

            int k = 0;
            for (Node<E> p = head.next; p != null; p = p.next)
                a[k++] = (T)p.item;
            if (a.length > k)
                a[k] = null;
            return a;
        } finally {
            fullyUnlock();
        }
    }

    public String toString() {
        fullyLock();
        try {
            Node<E> p = head.next;
            if (p == null)
                return "[]";

            StringBuilder sb = new StringBuilder();
            sb.append('[');
            for (;;) {
                E e = p.item;
                sb.append(e == this ? "(this Collection)" : e);
                p = p.next;
                if (p == null)
                    return sb.append(']').toString();
                sb.append(',').append(' ');
            }
        } finally {
            fullyUnlock();
        }
    }

    /**
     * Atomically removes all of the elements from this queue.
     * The queue will be empty after this call returns.
     */
    public void clear() {
        fullyLock();
        try {
            for (Node<E> p, h = head; (p = h.next) != null; h = p) {
                h.next = h;
                p.item = null;
            }
            head = last;
            // assert head.item == null && head.next == null;
            if (count.getAndSet(0) == capacity)
                notFull.signal();
        } finally {
            fullyUnlock();
        }
    }

    /**
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @throws IllegalArgumentException      {@inheritDoc}
     */
    public int drainTo(Collection<? super E> c) {
        return drainTo(c, Integer.MAX_VALUE);
    }

    /**
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @throws IllegalArgumentException      {@inheritDoc}
     */
    public int drainTo(Collection<? super E> c, int maxElements) {
        if (c == null)
            throw new NullPointerException();
        if (c == this)
            throw new IllegalArgumentException();
        if (maxElements <= 0)
            return 0;
        boolean signalNotFull = false;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lock();
        try {
            int n = Math.min(maxElements, count.get());
            // count.get provides visibility to first n Nodes
            Node<E> h = head;
            int i = 0;
            try {
                while (i < n) {
                    Node<E> p = h.next;
                    c.add(p.item);
                    p.item = null;
                    h.next = h;
                    h = p;
                    ++i;
                }
                return n;
            } finally {
                // Restore invariants even if c.add() threw
                if (i > 0) {
                    // assert h.item == null;
                    head = h;
                    signalNotFull = (count.getAndAdd(-i) == capacity);
                }
            }
        } finally {
            takeLock.unlock();
            if (signalNotFull)
                signalNotFull();
        }
    }

    /**
     * Returns an iterator over the elements in this queue in proper sequence.
     * The elements will be returned in order from first (head) to last (tail).
     *
     * <p>The returned iterator is
     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
     *
     * @return an iterator over the elements in this queue in proper sequence
     */
    public Iterator<E> iterator() {
        return new Itr();
    }

    private class Itr implements Iterator<E> {
        /*
         * Basic weakly-consistent iterator.  At all times hold the next
         * item to hand out so that if hasNext() reports true, we will
         * still have it to return even if lost race with a take etc.
         */

        private Node<E> current;
        private Node<E> lastRet;
        private E currentElement;

        Itr() {
            fullyLock();
            try {
                current = head.next;
                if (current != null)
                    currentElement = current.item;
            } finally {
                fullyUnlock();
            }
        }

        public boolean hasNext() {
            return current != null;
        }

        /**
         * Returns the next live successor of p, or null if no such.
         *
         * Unlike other traversal methods, iterators need to handle both:
         * - dequeued nodes (p.next == p)
         * - (possibly multiple) interior removed nodes (p.item == null)
         */
        private Node<E> nextNode(Node<E> p) {
            for (;;) {
                Node<E> s = p.next;
                if (s == p)
                    return head.next;
                if (s == null || s.item != null)
                    return s;
                p = s;
            }
        }

        public E next() {
            fullyLock();
            try {
                if (current == null)
                    throw new NoSuchElementException();
                E x = currentElement;
                lastRet = current;
                current = nextNode(current);
                currentElement = (current == null) ? null : current.item;
                return x;
            } finally {
                fullyUnlock();
            }
        }

        public void remove() {
            if (lastRet == null)
                throw new IllegalStateException();
            fullyLock();
            try {
                Node<E> node = lastRet;
                lastRet = null;
                for (Node<E> trail = head, p = trail.next;
                     p != null;
                     trail = p, p = p.next) {
                    if (p == node) {
                        unlink(p, trail);
                        break;
                    }
                }
            } finally {
                fullyUnlock();
            }
        }
    }

    /** A customized variant of Spliterators.IteratorSpliterator */
    static final class LBQSpliterator<E> implements Spliterator<E> {
        static final int MAX_BATCH = 1 << 25;  // max batch array size;
        final LinkedBlockingQueue<E> queue;
        Node<E> current;    // current node; null until initialized
        int batch;          // batch size for splits
        boolean exhausted;  // true when no more nodes
        long est;           // size estimate
        LBQSpliterator(LinkedBlockingQueue<E> queue) {
            this.queue = queue;
            this.est = queue.size();
        }

        public long estimateSize() { return est; }

        public Spliterator<E> trySplit() {
            Node<E> h;
            final LinkedBlockingQueue<E> q = this.queue;
            int b = batch;
            int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
            if (!exhausted &&
                ((h = current) != null || (h = q.head.next) != null) &&
                h.next != null) {
                Object[] a = new Object[n];
                int i = 0;
                Node<E> p = current;
                q.fullyLock();
                try {
                    if (p != null || (p = q.head.next) != null) {
                        do {
                            if ((a[i] = p.item) != null)
                                ++i;
                        } while ((p = p.next) != null && i < n);
                    }
                } finally {
                    q.fullyUnlock();
                }
                if ((current = p) == null) {
                    est = 0L;
                    exhausted = true;
                }
                else if ((est -= i) < 0L)
                    est = 0L;
                if (i > 0) {
                    batch = i;
                    return Spliterators.spliterator
                        (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
                         Spliterator.CONCURRENT);
                }
            }
            return null;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            if (action == null) throw new NullPointerException();
            final LinkedBlockingQueue<E> q = this.queue;
            if (!exhausted) {
                exhausted = true;
                Node<E> p = current;
                do {
                    E e = null;
                    q.fullyLock();
                    try {
                        if (p == null)
                            p = q.head.next;
                        while (p != null) {
                            e = p.item;
                            p = p.next;
                            if (e != null)
                                break;
                        }
                    } finally {
                        q.fullyUnlock();
                    }
                    if (e != null)
                        action.accept(e);
                } while (p != null);
            }
        }

        public boolean tryAdvance(Consumer<? super E> action) {
            if (action == null) throw new NullPointerException();
            final LinkedBlockingQueue<E> q = this.queue;
            if (!exhausted) {
                E e = null;
                q.fullyLock();
                try {
                    if (current == null)
                        current = q.head.next;
                    while (current != null) {
                        e = current.item;
                        current = current.next;
                        if (e != null)
                            break;
                    }
                } finally {
                    q.fullyUnlock();
                }
                if (current == null)
                    exhausted = true;
                if (e != null) {
                    action.accept(e);
                    return true;
                }
            }
            return false;
        }

        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.NONNULL |
                Spliterator.CONCURRENT;
        }
    }

    /**
     * Returns a {@link Spliterator} over the elements in this queue.
     *
     * <p>The returned spliterator is
     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
     *
     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
     *
     * @implNote
     * The {@code Spliterator} implements {@code trySplit} to permit limited
     * parallelism.
     *
     * @return a {@code Spliterator} over the elements in this queue
     * @since 1.8
     */
    public Spliterator<E> spliterator() {
        return new LBQSpliterator<E>(this);
    }

    /**
     * Saves this queue to a stream (that is, serializes it).
     *
     * @param s the stream
     * @throws java.io.IOException if an I/O error occurs
     * @serialData The capacity is emitted (int), followed by all of
     * its elements (each an {@code Object}) in the proper order,
     * followed by a null
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {

        fullyLock();
        try {
            // Write out any hidden stuff, plus capacity
            s.defaultWriteObject();

            // Write out all elements in the proper order.
            for (Node<E> p = head.next; p != null; p = p.next)
                s.writeObject(p.item);

            // Use trailing null as sentinel
            s.writeObject(null);
        } finally {
            fullyUnlock();
        }
    }

    /**
     * Reconstitutes this queue from a stream (that is, deserializes it).
     * @param s the stream
     * @throws ClassNotFoundException if the class of a serialized object
     *         could not be found
     * @throws java.io.IOException if an I/O error occurs
     */
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in capacity, and any hidden stuff
        s.defaultReadObject();

        count.set(0);
        last = head = new Node<E>(null);

        // Read in all elements and place in queue
        for (;;) {
            @SuppressWarnings("unchecked")
            E item = (E)s.readObject();
            if (item == null)
                break;
            add(item);
        }
    }
}

3.1.3 newScheduleThreadPool

创建一个线程池,在给定延迟后执行命令或者周期地执行。

ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(10);
点击查看代码
    /**
     * Creates a thread pool that can schedule commands to run after a
     * given delay, or to execute periodically.
     * @param corePoolSize the number of threads to keep in the pool,
     * even if they are idle
     * @return a newly created scheduled thread pool
     * @throws IllegalArgumentException if {@code corePoolSize < 0}
     */
    public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
        return new ScheduledThreadPoolExecutor(corePoolSize);
    }


	/**
     * Creates a new {@code ScheduledThreadPoolExecutor} with the
     * given core pool size.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @throws IllegalArgumentException if {@code corePoolSize < 0}
     */
    public ScheduledThreadPoolExecutor(int corePoolSize) {
        super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
              new DelayedWorkQueue());
    }


	// Public constructors and methods

    /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters and default thread factory and rejected execution handler.
     * It may be more convenient to use one of the {@link Executors} factory
     * methods instead of this general purpose constructor.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue} is null
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }


	/**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @param threadFactory the factory to use when the executor
     *        creates a new thread
     * @param handler the handler to use when execution is blocked
     *        because the thread bounds and queue capacities are reached
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue}
     *         or {@code threadFactory} or {@code handler} is null
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

    /**
     * An object that creates new threads on demand.  Using thread factories
     * removes hardwiring of calls to {@link Thread#Thread(Runnable) new Thread},
     * enabling applications to use special thread subclasses, priorities, etc.
     *
     * <p>
     * The simplest implementation of this interface is just:
     *  <pre> {@code
     * class SimpleThreadFactory implements ThreadFactory {
     *   public Thread newThread(Runnable r) {
     *     return new Thread(r);
     *   }
     * }}</pre>
     *
     * The {@link Executors#defaultThreadFactory} method provides a more
     * useful simple implementation, that sets the created thread context
     * to known values before returning it.
     * @since 1.5
     * @author Doug Lea
     */
    public interface ThreadFactory {

        /**
         * Constructs a new {@code Thread}.  Implementations may also initialize
         * priority, name, daemon status, {@code ThreadGroup}, etc.
         *
         * @param r a runnable to be executed by new thread instance
         * @return constructed thread, or {@code null} if the request to
         *         create a thread is rejected
         */
        Thread newThread(Runnable r);
    }


    public interface RejectedExecutionHandler {

        /**
         * Method that may be invoked by a {@link ThreadPoolExecutor} when
         * {@link ThreadPoolExecutor#execute execute} cannot accept a
         * task.  This may occur when no more threads or queue slots are
         * available because their bounds would be exceeded, or upon
         * shutdown of the Executor.
         *
         * <p>In the absence of other alternatives, the method may throw
         * an unchecked {@link RejectedExecutionException}, which will be
         * propagated to the caller of {@code execute}.
         *
         * @param r the runnable task requested to be executed
         * @param executor the executor attempting to execute this task
         * @throws RejectedExecutionException if there is no remedy
         */
        void rejectedExecution(Runnable r, ThreadPoolExecutor executor);
    }

 

例:

点击查看代码
public class Test2 {
	public static void main(String[] args) {
		ScheduledExecutorService pool =  Executors.newScheduledThreadPool(2);
		pool.scheduleWithFixedDelay(new Runnable() {				
			public void run() {				
				System.out.println(Thread.currentThread().getId() + " running...");
				try {
					Thread.sleep(500);
				} catch (Exception e) {
				}
			}
		}, 1,3, TimeUnit.SECONDS);// 延迟一秒后每三秒执行一次
		
		pool.scheduleWithFixedDelay(new Runnable() {				
			public void run() {				
				System.out.println(Thread.currentThread().getId() + " hello...");
				try {
					Thread.sleep(500);
				} catch (Exception e) {
				}	
			}
		}, 2,3, TimeUnit.SECONDS);// 延迟2秒后,每3秒执行一次
		
	}
}

执行结果:

点击查看代码
9 running...
10 hello...
9 running...
10 hello...
9 running...
10 hello...
9 running...
10 hello...
9 running...
10 hello...
9 running...
10 hello...
9 running...
10 hello...
9 running...

3.1.4 newSingleThreadExecutor

newSingleThreadExecutor线程池中只有一个线程,这个线程池在县城发生异常时重新创建一个线程来代替原来的线程继续执行下去。

点击查看代码
ExecutorService pool = Executors.newSingleThreadExecutor();

/**
     * Creates an Executor that uses a single worker thread operating
     * off an unbounded queue. (Note however that if this single
     * thread terminates due to a failure during execution prior to
     * shutdown, a new one will take its place if needed to execute
     * subsequent tasks.)  Tasks are guaranteed to execute
     * sequentially, and no more than one task will be active at any
     * given time. Unlike the otherwise equivalent
     * {@code newFixedThreadPool(1)} the returned executor is
     * guaranteed not to be reconfigurable to use additional threads.
     *
     * @return the newly created single-threaded Executor
     */
    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }

 

3.2线程生命周期(状态)

当线程被创建并启动后,它既不是已启动就进入执行状态,也不是一直处于执行状态。在线程生命周期中,它要经过新建(NEW)、就绪(Runnable)、运行(Running)、阻塞(Blocked)和死亡(Dead)5中状态。尤其是当线程启动以后,它不可能一直持有CPU使用权独自运行,所以CPU需要在多线程之间切换,于是线程状态也会多次在运行、阻塞之间切换。

 

  • 新建状态(NEW):当程序使用关键字new创建一个线程之后,该线程就处于新建状态,此时仅有JVM为其分配内存,并初始化器成员变量的值。

  • 就绪状态(Runnable):当线程调用start()方法之后,该线程就处于就绪状态。Java虚拟机会为其创建方法调用栈和程序计数器,等待调度运行。

  • 运行状态(running):如果处于就绪状态的线程获得CPU,则开始执行run()方法的线程执行体,则该线程处于运行状态。

  • 阻塞状态(blocked)阻塞状态是因为某种原因放弃了CPU使用权,即让出了cpu timeslice,暂时停止运行。知道线程进入可运行(runnable)状态,才有机会再次获得CPU timeslice转到运行状态(running)。
    • 阻塞情况分为三种:
    • 等待阻塞(o.wati -> 等待队列):运行(running)的线程执行o.wati() 方法,JVM会把该线程放入等待队列(waitting queue)中

    • 同步阻塞(lock -> 锁池):运行(running)的线程获取对象的同步锁时,若该同步锁被别的线程占用,则JVM会把该线程放入锁池(lock pool)中。

    • 其他阻塞(sleep、join):运行(running)的线程执行Thread.sleep(long ms) 或 t.join() 方法,或者发出 I/O请求时,JVM会把该线程设置为阻塞状态。当sleep() 状态超时、join() 等待线程终止或者超时、或者 I/O处理完毕是,线程重新转让可运行(runnable)状态。

  • 线程死亡(DEAD):线程结束后就是死亡状态。线程结束的三种方法:
    1. 正常结束:run()或call()方法执行完毕,线程正常执行结束。

    2. 异常结束:线程抛出一个为捕获的Exception或Error。

    3. 调用stop:直接调用改线程的stop()方法来结束改线程——该方法通常容易导致死锁,不推荐使用。

3.3线程终止4中方法

3.3.1 正常运行结束:程序运行结束,线程自动结束

3.3.2 使用退出标志退出线程

一般run() 方法执行完毕之后,线程就会正常结束,然而,有些线程(例如:伺服线程)需要长时间的运行,只有在外部某些条件满足的情况下才能关闭这些线程。因此,需要使用一个变量来控制循环。最直接的方式就是设一个boolean类型的标志,并通过设置这个标志为true或false来控制while循环是否退出。

3.3.3 Interrupt方法结束线程

使用interrupt() 方法来中断线程有两种情况:

  • 线程处于阻塞状态:如果使用了sleep同步锁的 waits ocke t中的receiver、accept等方法时,会使线程处于阻塞状态。当调用线程的interrupt() 方法时,会抛出 InterruptException 异常。阻塞中的那个方法抛出这个异常,通过代码捕获异常,让后break跳出循环状态,从而结束线程执行。注:一定要先捕获InterruptException异常之后同构 break 来跳出循环,才能真正结束 run 方法。

  • 线程处于未阻塞状态:使用 isInterrupted() 判断线程的中断标志来退出循环。当使用 interrupt 方法时,中断标志就会设置为 true,和使用自定义的标志来跳出循环时一个道理。

3.3.4 stop 方法终止线程(线程不安全)

程序中可以直接使用 thread.stop() 方法来强制终止线程,但是stop方法是很危险的,就像一台正在正常运行的计算机被突然关闭电源,可能会产生不可预料的结果。主要是因为 thread.stop() 方法执行之后,创建子线程的线程就会抛出 ThreadDeatherror 的错误,并且会释放子线程所持有的所有锁。那么被保护数据很有可能就会出现数据不一致的情况,其他线程在使用这些被破坏的数据时,有可能导致一些应用程序错误。因此,不推荐使用 stop 方法来终止线程。

 

3.4 sleep与wait的区别,start与run 方法的区别

3.4.1 sleep与wait的区别

  1. sleep方法属于 Thread 类,wait 方法属于 Object类。

  2. sleep 方法会导致程序暂停执行指定的时间,并让出 cpu 给其他线程,但是他的监控状态依然保持着,当指定时间到了之后又会自动恢复运行状态。调用 sleep 方法时,线程不会释放对象锁。wait 方法调用过程中,线程会释放对象锁并进入等待此对象的等待锁定池,只有针对此对象调用 notify() 方法后,该线程才进入对象锁定池准备获取对象锁并进入运行状态。

3.4.2 start 与 run 方法的区别

  1. start() 方法用于开启线程,正在实现了多线程运行。这时无需等待 run 方法体代码执行完毕就可以直接运行后面的代码。通过调用 Thread 类的 start 方法来开启一个线程,这时线程处于 Runnable 就绪状态,并没有运行。

  2. run() 方法称为线程体,它包含了要执行的这个线程的内容,调用 run 方法时线程就进入了运行状态(获得cpu时间切片的情况下),开始运行 run 函数中的代码。run 方法运行结束,线程终止,然后 CPU调度其他线程。

 

posted @ 2021-11-24 09:05  BlogMemory  阅读(66)  评论(0编辑  收藏  举报