[USACO07NOV]牛继电器Cow Relays
[USACO07NOV]牛继电器Cow Relays
题目描述
For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.
Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.
To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.
Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.
给出一张无向连通图,求S到E经过k条边的最短路。
输入输出格式
输入格式:
-
Line 1: Four space-separated integers: N, T, S, and E
- Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i
输出格式:
- Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.
输入输出样例
2 6 6 4 11 4 6 4 4 8 8 4 9 6 6 8 2 6 9 3 8 9
10
题解:
解法一:
考虑有用的点数很少,我们可以哈希一下,建立邻接矩阵,矩阵加速求出经过N条边的从S到T的最短路。
解法二:
利用倍增的思想。令f[i][j][t]表示从i到j经过2t条边的最优值,做一遍floyd再统计答案即可。
提供解法一的代码:
#include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #define inf (1e9) using namespace std; int n,m,s,t; int cnt,pos[1001]; struct matrix { int a[201][201]; matrix(){for(int i=1;i<=200;i++)for(int j=1;j<=200;j++)a[i][j]=inf;} matrix(int b[201][201]){for(int i=1;i<=cnt;i++)for(int j=1;j<=cnt;j++)a[i][j]=b[i][j];} matrix operator*(matrix b) { matrix ans; for(int i=1;i<=cnt;i++) for(int j=1;j<=cnt;j++) for(int k=1;k<=cnt;k++) ans.a[i][j]=min(ans.a[i][j],a[i][k]+b.a[k][j]); return ans; } }S,T; int main() { int i,j; scanf("%d%d%d%d",&n,&m,&s,&t); for(i=1;i<=m;i++) { int dis,from,to; scanf("%d%d%d",&dis,&from,&to); if(!pos[from])pos[from]=++cnt; if(!pos[to])pos[to]=++cnt; T.a[pos[from]][pos[to]]=T.a[pos[to]][pos[from]]=dis; } S=T; n--; while(n) { if(n&1)S=S*T; T=T*T; n>>=1; } printf("%d",S.a[pos[s]][pos[t]]); return 0; }