青蛙的约会

青蛙的约会

时间限制: 2 Sec  内存限制: 64 MB

题目描述

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

输入

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

输出

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

样例输入

1 2 3 4 5

样例输出

4

题解:

同样也是一道拓展欧几里德算法的裸题,稍加分析即可。

 

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
using namespace std;
long long n,m,xx,yy,a,b,l;
long long e_gcd(long long a,long long b,long long &x,long long &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    long long ans=e_gcd(b,a%b,x,y);
    long long temp=x;
    x=y;
    y=temp-(a/b*y);
    return ans;
}
long long val(long long a,long long m,long long c)
{
    long long x,y;
    long long gcd=e_gcd(a,m,x,y);
    if(c%gcd!=0)return -1;
    x*=c/gcd;
    m=m/gcd;
    m=abs(m);
    long long ans=x%m;
    if(ans<=0)ans+=m;
    return ans;
}
int main()
{
    long long i,j;
    cin>>xx>>yy>>a>>b>>l;
    long long x=val(a-b,l,yy-xx);
    if(x==-1)cout<<"Impossible"<<endl;
    else cout<<x<<endl;
    return 0;
}

 

posted @ 2017-06-15 21:38  kakakakakaka  阅读(155)  评论(0编辑  收藏  举报

Never forget why you start

//鼠标爆炸特效