1、背景
我们知道在sql
中是可以实现 group by 字段a,字段b
,那么这种效果在elasticsearch
中该如何实现呢?此处我们记录在elasticsearch
中的3种方式来实现这个效果。
2、实现多字段聚合的思路
图片来源:https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-terms-aggregation.html
从上图中,我们可以知道,可以通过3种方式来实现 多字段的聚合操作。
3、需求
根据省(province
)和性别(sex
)来进行聚合,然后根据聚合后的每个桶的数据,在根据每个桶中的最大年龄(age
)来进行倒序排序。
4、数据准备
4.1 创建索引
| PUT /index_person |
| { |
| "settings": { |
| "number_of_shards": 1 |
| }, |
| "mappings": { |
| "properties": { |
| "id": { |
| "type": "long" |
| }, |
| "name": { |
| "type": "keyword" |
| }, |
| "province": { |
| "type": "keyword" |
| }, |
| "sex": { |
| "type": "keyword" |
| }, |
| "age": { |
| "type": "integer" |
| }, |
| "address": { |
| "type": "text", |
| "analyzer": "ik_max_word", |
| "fields": { |
| "keyword": { |
| "type": "keyword", |
| "ignore_above": 256 |
| } |
| } |
| } |
| } |
| } |
| } |
4.2 准备数据
| PUT /_bulk |
| {"create":{"_index":"index_person","_id":1}} |
| {"id":1,"name":"张三","sex":"男","age":20,"province":"湖北","address":"湖北省黄冈市罗田县匡河镇"} |
| {"create":{"_index":"index_person","_id":2}} |
| {"id":2,"name":"李四","sex":"男","age":19,"province":"江苏","address":"江苏省南京市"} |
| {"create":{"_index":"index_person","_id":3}} |
| {"id":3,"name":"王武","sex":"女","age":25,"province":"湖北","address":"湖北省武汉市江汉区"} |
| {"create":{"_index":"index_person","_id":4}} |
| {"id":4,"name":"赵六","sex":"女","age":30,"province":"北京","address":"北京市东城区"} |
| {"create":{"_index":"index_person","_id":5}} |
| {"id":5,"name":"钱七","sex":"女","age":16,"province":"北京","address":"北京市西城区"} |
| {"create":{"_index":"index_person","_id":6}} |
| {"id":6,"name":"王八","sex":"女","age":45,"province":"北京","address":"北京市朝阳区"} |
5、实现方式
5.1 multi_terms实现
5.1.1 dsl
| GET /index_person/_search |
| { |
| "size": 0, |
| "aggs": { |
| "agg_province_sex": { |
| "multi_terms": { |
| "size": 10, |
| "shard_size": 25, |
| "order":{ |
| "max_age": "desc" |
| }, |
| "terms": [ |
| { |
| "field": "province", |
| "missing": "defaultProvince" |
| }, |
| { |
| "field": "sex" |
| } |
| ] |
| }, |
| "aggs": { |
| "max_age": { |
| "max": { |
| "field": "age" |
| } |
| } |
| } |
| } |
| } |
| } |
5.1.2 java 代码
| @Test |
| @DisplayName("多term聚合-根据省和性别聚合,然后根据最大年龄倒序") |
| public void agg01() throws IOException { |
| |
| SearchRequest searchRequest = new SearchRequest.Builder() |
| .size(0) |
| .index("index_person") |
| .aggregations("agg_province_sex", agg -> |
| agg.multiTerms(multiTerms -> |
| multiTerms.terms(term -> term.field("province")) |
| .terms(term -> term.field("sex")) |
| .order(new NamedValue<>("max_age", SortOrder.Desc)) |
| ) |
| .aggregations("max_age", ageAgg -> |
| ageAgg.max(max -> max.field("age"))) |
| |
| ) |
| .build(); |
| System.out.println(searchRequest); |
| SearchResponse<Object> response = client.search(searchRequest, Object.class); |
| System.out.println(response); |
| } |
5.1.3 运行结果
5.2 script实现
5.2.1 dsl
| GET /index_person/_search |
| { |
| "size": 0, |
| "runtime_mappings": { |
| "runtime_province_sex": { |
| "type": "keyword", |
| "script": """ |
| String province = doc['province'].value; |
| String sex = doc['sex'].value; |
| emit(province + '|' + sex); |
| """ |
| } |
| }, |
| "aggs": { |
| "agg_province_sex": { |
| "terms": { |
| "field": "runtime_province_sex", |
| "size": 10, |
| "shard_size": 25, |
| "order": { |
| "max_age": "desc" |
| } |
| }, |
| "aggs": { |
| "max_age": { |
| "max": { |
| "field": "age" |
| } |
| } |
| } |
| } |
| } |
| } |
5.2.2 java代码
| @Test |
| @DisplayName("多term聚合-根据省和性别聚合,然后根据最大年龄倒序") |
| public void agg02() throws IOException { |
| |
| SearchRequest searchRequest = new SearchRequest.Builder() |
| .size(0) |
| .index("index_person") |
| .runtimeMappings("runtime_province_sex", field -> { |
| field.type(RuntimeFieldType.Keyword); |
| field.script(script -> script.inline(new InlineScript.Builder() |
| .lang(ScriptLanguage.Painless) |
| .source("String province = doc['province'].value;\n" + |
| " String sex = doc['sex'].value;\n" + |
| " emit(province + '|' + sex);") |
| .build())); |
| return field; |
| }) |
| .aggregations("agg_province_sex", agg -> |
| agg.terms(terms -> |
| terms.field("runtime_province_sex") |
| .size(10) |
| .shardSize(25) |
| .order(new NamedValue<>("max_age", SortOrder.Desc)) |
| ) |
| .aggregations("max_age", minAgg -> |
| minAgg.max(max -> max.field("age"))) |
| ) |
| .build(); |
| System.out.println(searchRequest); |
| SearchResponse<Object> response = client.search(searchRequest, Object.class); |
| System.out.println(response); |
| } |
5.2.3 运行结果
5.3 通过copyto实现
我本地测试过,通过copyto没实现,此处故先不考虑
5.5 通过pipeline来实现
实现思路:
创建mapping时,多创建一个字段pipeline_province_sex
,该字段的值由创建数据时指定pipeline
来生产。
5.4.1 创建mapping
| PUT /index_person |
| { |
| "settings": { |
| "number_of_shards": 1 |
| }, |
| "mappings": { |
| "properties": { |
| "id": { |
| "type": "long" |
| }, |
| "name": { |
| "type": "keyword" |
| }, |
| "province": { |
| "type": "keyword" |
| }, |
| "sex": { |
| "type": "keyword" |
| }, |
| "age": { |
| "type": "integer" |
| }, |
| "pipeline_province_sex":{ |
| "type": "keyword" |
| }, |
| "address": { |
| "type": "text", |
| "analyzer": "ik_max_word", |
| "fields": { |
| "keyword": { |
| "type": "keyword", |
| "ignore_above": 256 |
| } |
| } |
| } |
| } |
| } |
| } |
此处指定了一个字段pipeline_province_sex
,该字段的值会由pipeline
来处理。
5.4.2 创建pipeline
| PUT _ingest/pipeline/pipeline_index_person_provice_sex |
| { |
| "description": "将provice和sex的值拼接起来", |
| "processors": [ |
| { |
| "set": { |
| "field": "pipeline_province_sex", |
| "value": ["{{province}}", "{{sex}}"] |
| }, |
| "join": { |
| "field": "pipeline_province_sex", |
| "separator": "|" |
| } |
| } |
| ] |
| } |
5.4.3 插入数据
| PUT /_bulk?pipeline=pipeline_index_person_provice_sex |
| {"create":{"_index":"index_person","_id":1}} |
| {"id":1,"name":"张三","sex":"男","age":20,"province":"湖北","address":"湖北省黄冈市罗田县匡河镇"} |
| {"create":{"_index":"index_person","_id":2}} |
| {"id":2,"name":"李四","sex":"男","age":19,"province":"江苏","address":"江苏省南京市"} |
| {"create":{"_index":"index_person","_id":3}} |
| {"id":3,"name":"王武","sex":"女","age":25,"province":"湖北","address":"湖北省武汉市江汉区"} |
| {"create":{"_index":"index_person","_id":4}} |
| {"id":4,"name":"赵六","sex":"女","age":30,"province":"北京","address":"北京市东城区"} |
| {"create":{"_index":"index_person","_id":5}} |
| {"id":5,"name":"钱七","sex":"女","age":16,"province":"北京","address":"北京市西城区"} |
| {"create":{"_index":"index_person","_id":6}} |
| {"id":6,"name":"王八","sex":"女","age":45,"province":"北京","address":"北京市朝阳区"} |
注意: 此处的插入需要指定上一步的pipeline
PUT /_bulk?pipeline=pipeline_index_person_provice_sex
5.4.4 聚合dsl
| GET /index_person/_search |
| { |
| "size": 0, |
| "aggs": { |
| "agg_province_sex": { |
| "terms": { |
| "field": "pipeline_province_sex", |
| "size": 10, |
| "shard_size": 25, |
| "order": { |
| "max_age": "desc" |
| } |
| }, |
| "aggs": { |
| "max_age": { |
| "max": { |
| "field": "age" |
| } |
| } |
| } |
| } |
| } |
| } |
5.4.5 运行结果
6、实现代码
https://gitee.com/huan1993/spring-cloud-parent/blob/master/es/es8-api/src/main/java/com/huan/es8/aggregations/bucket/MultiTermsAggs.java
7、参考文档
- https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-terms-aggregation.html
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步