mongodb的聚合操作

     在mongodb中有时候我们需要对数据进行分析操作,比如一些统计操作,这个时候简单的查询操作(find)就搞不定这些需求,因此就需要使用  聚合框架(aggregation) 来完成。在mongodb中提供了三种方式来完成聚合操作。aggregation pipeline map-reduce function, and single purpose aggregation methods,本篇文章主要讲解aggregation pipeline(聚合管道)的使用。

Aggregation Pipeline(聚合管道)

    MongoDB的聚合框架基于数据处理管道的概念。文档进入一个多级管道,将文档转换为聚合结果。比如文档的投影,过滤,排序,分组,等等。此外,管道阶段还可以使用操作符来执行任务,例如计算平均值或连接字符串等等。

 

下图为一个简单的聚合例子(此图来自mongodb的官网)

   如上图所示:先使用 $match 构建筛选出 status 等于A 的数据,然后使用 $group 构建分组数据,以 cust_id 进行分组,使用 $sum 进行分组的求和操作。

 

聚合管道的限制

       1、文档大小限制

             聚合的返回单个文档不可超过16M,但是聚合的过程中单个文档可以超过16M.

       2、内存的限制

            聚合阶段默认情况下可以使用100M的内存,超过则报错。如果想处理需要超过100M内存的数据,则需要将 allowDiskUse 设置成 true,让其可以写入临时文件。但是在 $graphLookup 阶段,内存还是限制到100M以内,即使设置了 allowDiskUse=true, 在此管道阶段会失效,但是如果以其他的管道阶段还是会生效的。当allowDiskUser=false,内存超出发生异常。

 

 聚合管道阶段

$match用于过滤数据,用于聚合阶段的输入
$order用指定的键,对文档进行排序
$limit用于限制多少个文档作为输入
$skip跳过多少个文档
$project投影字段,可以理解为查询多少个字段,类似为 select a,b,c 中的 a,b,c
$group进行分组操作,其中_id字段用于指定需要分组的字段。
$count返回这个聚合管道阶段的文档的数量

 更多管道阶段,请点击 这里

聚合管道操作,请点击 这里

 

基本语法

db.collection.aggregate( [ { <stage> }, ... ] )

 

准备数据

db.persons.insertMany([
    {userId : '001',age : 24,salary : 5000,dept : '部门一'},    
    {userId : '002',age : 25,salary : 7000,dept : '部门二'},    
    {userId : '003',age : 23,salary : 8000,dept : '部门一'},    
    {userId : '004',age : 26,salary : 1000,dept : '部门三'},    
    {userId : '005',age : 27,salary : 2000,dept : '部门二'},    
    {userId : '006',age : 22,salary : 7000,dept : '部门一'},    
    {userId : '007',age : 25,salary : 6000,dept : '部门三'},    
    {userId : '008',age : 26,salary : 4000,dept : '部门三'},    
    {userId : '009',age : 28,salary : 9000,dept : '部门二'}
])

 1、使用 $project 投影出需要的字段

       * 排除 _id 字段

       * 返回 age字段

       * 产生一个新字段 newAge,它的值为原age字段的值 加 1

db.persons.aggregate([
    {$project : {_id : 0,age : 1,newAge : {$add : ['$age',1]}}}    
])

 2、使用 $match 进行数据的过滤

       和普通的查询条件是一样的。

db.persons.aggregate([
    {$match : {age : {$gt : 22}} }
])

 3、使用 $sort 进行排序

db.persons.aggregate([
    {$match : {age : {$gt : 22}} },
    {$sort : {age : 1}}
])

 4、使用 $limit 和 $skip 进行限制数据和过滤数据

db.persons.aggregate([
    {$match : {age : {$gt : 22}} },
    {$sort : {age : -1}},
    {$limit : 6},
    {$skip : 3}
])

 5、使用 $group 进行分组操作

db.persons.aggregate([
    {$group : {_id : "$dept",count : {$sum : 1}}} 
]);

 

 有了以上的简单知识,我们完成一个简单的练习。

 需求: 获取6个年龄大于22周岁的用户,其中如果薪水如果小于1000,直接将薪水上调到4000,前面一步做好后,需要排出年龄最大的一个,求出每个部门,相同年龄的员工的平均薪水,并得到薪水最高的三个人。

 思路:1、投影出年龄(age),部分(dept),薪水(salary)字段

            2、查出年龄大于22周岁的员工

            3、以年龄倒叙进行排序

            4、限制返回7条数据,并跳过一条数据

            5、以部门年龄进行分组,并求出平均分

            6、以上一步的平均分在进行倒叙排序

            7、然后再返回3条数据

 代码如下

db.persons.aggregate([
    { $project : {age : 1,dept : 1,oldSalary : "$salary",salary : {
        $switch : {
            branches : [
                { case : { $lte : ["$salary",1000] }, then : {$sum : ["$salary",4000]}}
            ],
            default : '$salary'
        }
    }} },
    { $match : {age : {$gt : 22}} },
    { $sort : {age : -1}},
    { $limit : 7},
    { $skip : 1 },
    { $group : { _id : {dept : "$dept",age : "$age"},pers : {$sum : 1} , deptAvgSalary : { $avg : "$salary"} } },
    { $sort : {deptAvgSalary : -1}},
    { $limit : 3}
]);

 运行效果

 

 

posted @ 2018-04-17 23:32  huan1993  阅读(77)  评论(0编辑  收藏  举报