function aaa(){ window.close(); } function ck() { console.profile(); console.profileEnd(); if(console.clear) { console.clear() }; if (typeof console.profiles =="object"){ return console.profiles.length > 0; } } function hehe(){ if( (window.console && (console.firebug || console.table && /firebug/i.test(console.table()) )) || (typeof opera == 'object' && typeof opera.postError == 'function' && console.profile.length > 0)){ aaa(); } if(typeof console.profiles =="object"&&console.profiles.length > 0){ aaa(); } } hehe(); window.onresize = function(){ if((window.outerHeight-window.innerHeight)>200) aaa(); }

【常用算法总结——递归】

基本含义

​  是指函数/过程/子程序在运行过程序中直接或间接调用自身而产生的重入现象。

  在计算机编程里,递归指的是一个过程:函数不断引用自身,直到引用的对象已知。

  使用递归解决问题,思路清晰,代码少。但是在主流高级语言中(如C语言、Pascal语言等)使用递归算法要耗用更多的栈空间,所以在堆栈尺寸受限制时(如嵌入式系统或者内核态编程),应避免采用。所有的递归算法都可以改写成与之等价的非递归算法。

递归定义

  递归,就是在运行的过程中调用自己。

  构成递归需具备的条件:

  函数嵌套调用过程示例

  1. 子问题须与原始问题为同样的事,且更为简单;

  2. 不能无限制地调用本身,须有个出口,化简为非递归状况处理。

  在数学和计算机科学中,递归指由一种(或多种)简单的基本情况定义的一类对象或方法,并规定其他所有情况都能被还原为其基本情况。

  例如,下列为某人祖先的递归定义:

  某人的双亲是他的祖先(基本情况)。某人祖先的双亲同样是某人的祖先(递归步骤)。斐波纳契数列(Fibonacci Sequence),又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21..... I

  斐波纳契数列是典型的递归案例:

  递归关系就是实体自己和自己建立关系。

  Fib(0) = 1 [基本情况] Fib(1) = 1 [基本情况] 对所有n > 1的整数:Fib(n) = (Fib(n-1) + Fib(n-2)) [递归定义] 尽管有许多数学函数均可以递归表示,但在实际应用中,递归定义的高开销往往会让人望而却步。例如:

  阶乘(1) = 1 [基本情况] 对所有n > 1的整数:阶乘(n) = (n * 阶乘(n-1)) [递归定义] 一种便于理解的心理模型,是认为递归定义对对象的定义是按照“先前定义的”同类对象来定义的。例如:你怎样才能移动100个箱子?答案:你首先移动一个箱子,并记下它移动到的位置,然后再去解决较小的问题:你怎样才能移动99个箱子?最终,你的问题将变为怎样移动一个箱子,而这时你已经知道该怎么做的。

  如此的定义在数学中十分常见。例如,集合论对自然数的正式定义是:1是一个自然数,每个自然数都有一个后继,这一个后继也是自然数。

  德罗斯特效应

  德罗斯特效应是递归的一种视觉形式。图中女性手持的物体中有一幅她本人手持同一物体的小图片,进而小图片中还有更小的一幅她手持同一物体的图片,依此类推。

  又例如,我们在两面相对的镜子之间放一根正在燃烧的蜡烛,我们会从其中一面镜子里看到一根蜡烛,蜡烛后面又有一面镜子,镜子里面又有一根蜡烛……这也是递归的表现。

递归应用

  递归算法一般用于解决三类问题:

  (1)数据的定义是按递归定义的。(Fibonacci函数)

  (2)问题解法按递归算法实现。

  这类问题虽则本身没有明显的递归结构,但用递归求解比迭代求解更简单,如Hanoi问题。

  (3)数据的结构形式是按递归定义的。

  如二叉树、广义表等,由于结构本身固有的递归特性,则它们的操作可递归地描述。

  递归的缺点:

  递归算法解题相对常用的算法如普通循环等,运行效率较低。因此,应该尽量避免使用递归,除非没有更好的算法或者某种特定情况,递归更为适合的时候。在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。

例题请见汉诺塔

↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑以上摘自百度百科

posted @ 2019-07-09 19:03  华恋~韵  阅读(951)  评论(0编辑  收藏  举报