C++ 【第二篇】面向对象编程(一)
面向对象编程

class Person { public: //构造函数 Person() { cout << "Person的构造函数调用" << endl; } //析构函数 ~Person() { cout << "Person的析构函数调用" << endl; } }; void test01() { Person p; } int main() { test01(); system("pause"); return 0; }

//1、构造函数分类 // 按照参数分类分为 有参和无参构造 无参又称为默认构造函数 // 按照类型分类分为 普通构造和拷贝构造 class Person { public: //无参(默认)构造函数 Person() { cout << "无参构造函数!" << endl; } //有参构造函数 Person(int a) { age = a; cout << "有参构造函数!" << endl; } //拷贝构造函数 Person(const Person& p) { age = p.age; cout << "拷贝构造函数!" << endl; } //析构函数 ~Person() { cout << "析构函数!" << endl; } public: int age; }; //2、构造函数的调用 //调用无参构造函数 void test01() { Person p; //调用无参构造函数 } //调用有参的构造函数 void test02() { //2.1 括号法,常用 Person p1(10); //注意1:调用无参构造函数不能加括号,如果加了编译器认为这是一个函数声明 //Person p2(); //2.2 显式法 Person p2 = Person(10); Person p3 = Person(p2); //Person(10)单独写就是匿名对象 当前行结束之后,马上析构 //2.3 隐式转换法 Person p4 = 10; // Person p4 = Person(10); Person p5 = p4; // Person p5 = Person(p4); //注意2:不能利用 拷贝构造函数 初始化匿名对象 编译器认为是对象声明 //Person p5(p4); } int main() { test01(); //test02(); system("pause"); return 0; }

class Person { public: Person() { cout << "无参构造函数!" << endl; mAge = 0; } Person(int age) { cout << "有参构造函数!" << endl; mAge = age; } Person(const Person& p) { cout << "拷贝构造函数!" << endl; mAge = p.mAge; } //析构函数在释放内存之前调用 ~Person() { cout << "析构函数!" << endl; } public: int mAge; }; //1. 使用一个已经创建完毕的对象来初始化一个新对象 void test01() { Person man(100); //p对象已经创建完毕 Person newman(man); //调用拷贝构造函数 Person newman2 = man; //拷贝构造 //Person newman3; //newman3 = man; //不是调用拷贝构造函数,赋值操作 } //2. 值传递的方式给函数参数传值 //相当于Person p1 = p; void doWork(Person p1) {} void test02() { Person p; //无参构造函数 doWork(p); } //3. 以值方式返回局部对象 Person doWork2() { Person p1; cout << (int *)&p1 << endl; return p1; } void test03() { Person p = doWork2(); cout << (int *)&p << endl; } int main() { //test01(); //test02(); test03(); system("pause"); return 0; }

class Person { public: //无参(默认)构造函数 Person() { cout << "无参构造函数!" << endl; } //有参构造函数 Person(int age ,int height) { cout << "有参构造函数!" << endl; m_age = age; m_height = new int(height); } //拷贝构造函数 Person(const Person& p) { cout << "拷贝构造函数!" << endl; //如果不利用深拷贝在堆区创建新内存,会导致浅拷贝带来的重复释放堆区问题 m_age = p.m_age; m_height = new int(*p.m_height); } //析构函数 ~Person() { cout << "析构函数!" << endl; if (m_height != NULL) { delete m_height; } } public: int m_age; int* m_height; }; void test01() { Person p1(18, 180); Person p2(p1); cout << "p1的年龄: " << p1.m_age << " 身高: " << *p1.m_height << endl; cout << "p2的年龄: " << p2.m_age << " 身高: " << *p2.m_height << endl; } int main() { test01(); system("pause"); return 0; }

class Person { public: ////传统方式初始化 //Person(int a, int b, int c) { // m_A = a; // m_B = b; // m_C = c; //} //初始化列表方式初始化 Person(int a, int b, int c) :m_A(a), m_B(b), m_C(c) {} void PrintPerson() { cout << "mA:" << m_A << endl; cout << "mB:" << m_B << endl; cout << "mC:" << m_C << endl; } private: int m_A; int m_B; int m_C; }; int main() { Person p(1, 2, 3); p.PrintPerson(); system("pause"); return 0; }

class Person { public: ////传统方式初始化 //Person(int a, int b, int c) { // m_A = a; // m_B = b; // m_C = c; //} //初始化列表方式初始化 Person(int a, int b, int c) :m_A(a), m_B(b), m_C(c) {} void PrintPerson() { cout << "mA:" << m_A << endl; cout << "mB:" << m_B << endl; cout << "mC:" << m_C << endl; } private: int m_A; int m_B; int m_C; }; int main() { Person p(1, 2, 3); p.PrintPerson(); system("pause"); return 0; }

class Person { public: static int m_A; //静态成员变量 //静态成员变量特点: //1 在编译阶段分配内存 //2 类内声明,类外初始化 //3 所有对象共享同一份数据 private: static int m_B; //静态成员变量也是有访问权限的 }; int Person::m_A = 10; int Person::m_B = 10; void test01() { //静态成员变量两种访问方式 //1、通过对象 Person p1; p1.m_A = 100; cout << "p1.m_A = " << p1.m_A << endl; Person p2; p2.m_A = 200; cout << "p1.m_A = " << p1.m_A << endl; //共享同一份数据 cout << "p2.m_A = " << p2.m_A << endl; //2、通过类名 cout << "m_A = " << Person::m_A << endl; //cout << "m_B = " << Person::m_B << endl; //私有权限访问不到 } int main() { test01(); system("pause"); return 0; }

class Person { public: //静态成员函数特点: //1 程序共享一个函数 //2 静态成员函数只能访问静态成员变量 static void func() { cout << "func调用" << endl; m_A = 100; //m_B = 100; //错误,不可以访问非静态成员变量 } static int m_A; //静态成员变量 int m_B; // private: //静态成员函数也是有访问权限的 static void func2() { cout << "func2调用" << endl; } }; int Person::m_A = 10; void test01() { //静态成员变量两种访问方式 //1、通过对象 Person p1; p1.func(); //2、通过类名 Person::func(); //Person::func2(); //私有权限访问不到 } int main() { test01(); system("pause"); return 0; }
二 对象模型与this指针

class Person { public: Person() { mA = 0; } //非静态成员变量占对象空间 int mA; //静态成员变量不占对象空间 static int mB; //函数也不占对象空间,所有函数共享一个函数实例 void func() { cout << "mA:" << this->mA << endl; } //静态成员函数也不占对象空间 static void sfunc() { } }; int main() { cout << sizeof(Person) << endl; system("pause"); return 0; }

class Person { public: Person(int age) { //1、当形参和成员变量同名时,可用this指针来区分 this->age = age; } Person& PersonAddPerson(Person p) { this->age += p.age; //返回对象本身 return *this; } int age; }; void test01() { Person p1(10); cout << "p1.age = " << p1.age << endl; Person p2(10); p2.PersonAddPerson(p1).PersonAddPerson(p1).PersonAddPerson(p1); cout << "p2.age = " << p2.age << endl; } int main() { test01(); system("pause"); return 0; }

//空指针访问成员函数 class Person { public: void ShowClassName() { cout << "我是Person类!" << endl; } void ShowPerson() { if (this == NULL) { return; } cout << mAge << endl; } public: int mAge; }; void test01() { Person * p = NULL; p->ShowClassName(); //空指针,可以调用成员函数 p->ShowPerson(); //但是如果成员函数中用到了this指针,就不可以了 } int main() { test01(); system("pause"); return 0; }

class Person { public: Person() { m_A = 0; m_B = 0; } //this指针的本质是一个指针常量,指针的指向不可修改 //如果想让指针指向的值也不可以修改,需要声明常函数 void ShowPerson() const { //const Type* const pointer; //this = NULL; //不能修改指针的指向 Person* const this; //this->mA = 100; //但是this指针指向的对象的数据是可以修改的 //const修饰成员函数,表示指针指向的内存空间的数据不能修改,除了mutable修饰的变量 this->m_B = 100; } void MyFunc() const { //mA = 10000; } public: int m_A; mutable int m_B; //可修改 可变的 }; //const修饰对象 常对象 void test01() { const Person person; //常量对象 cout << person.m_A << endl; //person.mA = 100; //常对象不能修改成员变量的值,但是可以访问 person.m_B = 100; //但是常对象可以修改mutable修饰成员变量 //常对象访问成员函数 person.MyFunc(); //常对象不能调用const的函数 } int main() { test01(); system("pause"); return 0; }
三 友元
友元的目的就是让一个函数或者类 访问另一个类中私有成员

class Building { //告诉编译器 goodGay全局函数 是 Building类的好朋友,可以访问类中的私有内容 friend void goodGay(Building * building); public: Building() { this->m_SittingRoom = "客厅"; this->m_BedRoom = "卧室"; } public: string m_SittingRoom; //客厅 private: string m_BedRoom; //卧室 }; void goodGay(Building * building) { cout << "好基友正在访问: " << building->m_SittingRoom << endl; cout << "好基友正在访问: " << building->m_BedRoom << endl; } void test01() { Building b; goodGay(&b); } int main(){ test01(); system("pause"); return 0; }

class Building; class goodGay { public: goodGay(); void visit(); private: Building *building; }; class Building { //告诉编译器 goodGay类是Building类的好朋友,可以访问到Building类中私有内容 friend class goodGay; public: Building(); public: string m_SittingRoom; //客厅 private: string m_BedRoom;//卧室 }; Building::Building() { this->m_SittingRoom = "客厅"; this->m_BedRoom = "卧室"; } goodGay::goodGay() { building = new Building; } void goodGay::visit() { cout << "好基友正在访问" << building->m_SittingRoom << endl; cout << "好基友正在访问" << building->m_BedRoom << endl; } void test01() { goodGay gg; gg.visit(); } int main(){ test01(); system("pause"); return 0; }

class Building; class goodGay { public: goodGay(); void visit(); //只让visit函数作为Building的好朋友,可以发访问Building中私有内容 void visit2(); private: Building *building; }; class Building { //告诉编译器 goodGay类中的visit成员函数 是Building好朋友,可以访问私有内容 friend void goodGay::visit(); public: Building(); public: string m_SittingRoom; //客厅 private: string m_BedRoom;//卧室 }; Building::Building() { this->m_SittingRoom = "客厅"; this->m_BedRoom = "卧室"; } goodGay::goodGay() { building = new Building; } void goodGay::visit() { cout << "好基友正在访问" << building->m_SittingRoom << endl; cout << "好基友正在访问" << building->m_BedRoom << endl; } void goodGay::visit2() { cout << "好基友正在访问" << building->m_SittingRoom << endl; //cout << "好基友正在访问" << building->m_BedRoom << endl; } void test01() { goodGay gg; gg.visit(); } int main(){ test01(); system("pause"); return 0; }
四 运算符重载

class Person { public: Person() {}; Person(int a, int b) { this->m_A = a; this->m_B = b; } //成员函数实现 + 号运算符重载 Person operator+(const Person& p) { Person temp; temp.m_A = this->m_A + p.m_A; temp.m_B = this->m_B + p.m_B; return temp; } public: int m_A; int m_B; }; //全局函数实现 + 号运算符重载 //Person operator+(const Person& p1, const Person& p2) { // Person temp(0, 0); // temp.m_A = p1.m_A + p2.m_A; // temp.m_B = p1.m_B + p2.m_B; // return temp; //} //运算符重载 可以发生函数重载 Person operator+(const Person& p2, int val) { Person temp; temp.m_A = p2.m_A + val; temp.m_B = p2.m_B + val; return temp; } void test() { Person p1(10, 10); Person p2(20, 20); //成员函数方式 Person p3 = p2 + p1; //相当于 p2.operaor+(p1) cout << "mA:" << p3.m_A << " mB:" << p3.m_B << endl; Person p4 = p3 + 10; //相当于 operator+(p3,10) cout << "mA:" << p4.m_A << " mB:" << p4.m_B << endl; } int main() { test(); system("pause"); return 0; }

class Person { friend ostream& operator<<(ostream& out, Person& p); public: Person(int a, int b) { this->m_A = a; this->m_B = b; } //成员函数 实现不了 p << cout 不是我们想要的效果 //void operator<<(Person& p){ //} private: int m_A; int m_B; }; //全局函数实现左移重载 //ostream对象只能有一个 ostream& operator<<(ostream& out, Person& p) { out << "a:" << p.m_A << " b:" << p.m_B; return out; } void test() { Person p1(10, 20); cout << p1 << "hello world" << endl; //链式编程 } int main() { test(); system("pause"); return 0; }

class MyInteger { friend ostream& operator<<(ostream& out, MyInteger myint); public: MyInteger() { m_Num = 0; } //前置++ MyInteger& operator++() { //先++ m_Num++; //再返回 return *this; } //后置++ MyInteger operator++(int) { //先返回 MyInteger temp = *this; //记录当前本身的值,然后让本身的值加1,但是返回的是以前的值,达到先返回后++; m_Num++; return temp; } private: int m_Num; }; ostream& operator<<(ostream& out, MyInteger myint) { out << myint.m_Num; return out; } //前置++ 先++ 再返回 void test01() { MyInteger myInt; cout << ++myInt << endl; cout << myInt << endl; } //后置++ 先返回 再++ void test02() { MyInteger myInt; cout << myInt++ << endl; cout << myInt << endl; } int main() { test01(); //test02(); system("pause"); return 0; }

class Person { public: Person(int age) { //将年龄数据开辟到堆区 m_Age = new int(age); } //重载赋值运算符 Person& operator=(Person &p) { if (m_Age != NULL) { delete m_Age; m_Age = NULL; } //编译器提供的代码是浅拷贝 //m_Age = p.m_Age; //提供深拷贝 解决浅拷贝的问题 m_Age = new int(*p.m_Age); //返回自身 return *this; } ~Person() { if (m_Age != NULL) { delete m_Age; m_Age = NULL; } } //年龄的指针 int *m_Age; }; void test01() { Person p1(18); Person p2(20); Person p3(30); p3 = p2 = p1; //赋值操作 cout << "p1的年龄为:" << *p1.m_Age << endl; cout << "p2的年龄为:" << *p2.m_Age << endl; cout << "p3的年龄为:" << *p3.m_Age << endl; } int main() { test01(); //int a = 10; //int b = 20; //int c = 30; //c = b = a; //cout << "a = " << a << endl; //cout << "b = " << b << endl; //cout << "c = " << c << endl; system("pause"); return 0; }

class Person { public: Person(string name, int age) { this->m_Name = name; this->m_Age = age; }; bool operator==(Person & p) { if (this->m_Name == p.m_Name && this->m_Age == p.m_Age) { return true; } else { return false; } } bool operator!=(Person & p) { if (this->m_Name == p.m_Name && this->m_Age == p.m_Age) { return false; } else { return true; } } string m_Name; int m_Age; }; void test01() { //int a = 0; //int b = 0; Person a("孙悟空", 18); Person b("孙悟空", 18); if (a == b) { cout << "a和b相等" << endl; } else { cout << "a和b不相等" << endl; } if (a != b) { cout << "a和b不相等" << endl; } else { cout << "a和b相等" << endl; } } int main() { test01(); system("pause"); return 0; }

class MyPrint { public: void operator()(string text) { cout << text << endl; } }; void test01() { //重载的()操作符 也称为仿函数 MyPrint myFunc; myFunc("hello world"); } class MyAdd { public: int operator()(int v1, int v2) { return v1 + v2; } }; void test02() { MyAdd add; int ret = add(10, 10); cout << "ret = " << ret << endl; //匿名对象调用 cout << "MyAdd()(100,100) = " << MyAdd()(100, 100) << endl; } int main() { test01(); test02(); system("pause"); return 0; }
五 封装

class C1 { int m_A; //默认是私有权限 }; struct C2 { int m_A; //默认是公共权限 }; int main() { C1 c1; c1.m_A = 10; //错误,访问权限是私有 C2 c2; c2.m_A = 10; //正确,访问权限是公共 system("pause"); return 0; }

//圆周率 const double PI = 3.14; //1、封装的意义 //将属性和行为作为一个整体,用来表现生活中的事物 //封装一个圆类,求圆的周长 //class代表设计一个类,后面跟着的是类名 class Circle { public: //访问权限 公共的权限 //属性 int m_r;//半径 //行为 //获取到圆的周长 double calculateZC() { //2 * pi * r //获取圆的周长 return 2 * PI * m_r; } }; int main() { //通过圆类,创建圆的对象 // c1就是一个具体的圆 Circle c1; c1.m_r = 10; //给圆对象的半径 进行赋值操作 //2 * pi * 10 = = 62.8 cout << "圆的周长为: " << c1.calculateZC() << endl; system("pause"); return 0; }

//学生类 class Student { public: void setName(string name) { m_name = name; } void setID(int id) { m_id = id; } void showStudent() { cout << "name:" << m_name << " ID:" << m_id << endl; } public: string m_name; int m_id; }; int main() { Student stu; stu.setName("德玛西亚"); stu.setID(250); stu.showStudent(); system("pause"); return 0; }

//三种权限 //公共权限 public 类内可以访问 类外可以访问 //保护权限 protected 类内可以访问 类外不可以访问 //私有权限 private 类内可以访问 类外不可以访问 class Person { //姓名 公共权限 public: string m_Name; //汽车 保护权限 protected: string m_Car; //银行卡密码 私有权限 private: int m_Password; public: void func() { m_Name = "张三"; m_Car = "拖拉机"; m_Password = 123456; } }; int main() { Person p; p.m_Name = "李四"; //p.m_Car = "奔驰"; //保护权限类外访问不到 //p.m_Password = 123; //私有权限类外访问不到 system("pause"); return 0; }

class Person { public: //姓名设置可读可写 void setName(string name) { m_Name = name; } string getName() { return m_Name; } //获取年龄 int getAge() { return m_Age; } //设置年龄 void setAge(int age) { if (age < 0 || age > 150) { cout << "你个老妖精!" << endl; return; } m_Age = age; } //情人设置为只写 void setLover(string lover) { m_Lover = lover; } private: string m_Name; //可读可写 姓名 int m_Age; //只读 年龄 string m_Lover; //只写 情人 }; int main() { Person p; //姓名设置 p.setName("张三"); cout << "姓名: " << p.getName() << endl; //年龄设置 p.setAge(50); cout << "年龄: " << p.getAge() << endl; //情人设置 p.setLover("苍井"); //cout << "情人: " << p.m_Lover << endl; //只写属性,不可以读取 system("pause"); return 0; }
六 继承

//公共页面 class BasePage { public: void header() { cout << "首页、公开课、登录、注册...(公共头部)" << endl; } void footer() { cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl; } void left() { cout << "Java,Python,C++...(公共分类列表)" << endl; } }; //Java页面 class Java : public BasePage { public: void content() { cout << "JAVA学科视频" << endl; } }; //Python页面 class Python : public BasePage { public: void content() { cout << "Python学科视频" << endl; } }; //C++页面 class CPP : public BasePage { public: void content() { cout << "C++学科视频" << endl; } }; void test01() { //Java页面 cout << "Java下载视频页面如下: " << endl; Java ja; ja.header(); ja.footer(); ja.left(); ja.content(); cout << "--------------------" << endl; //Python页面 cout << "Python下载视频页面如下: " << endl; Python py; py.header(); py.footer(); py.left(); py.content(); cout << "--------------------" << endl; //C++页面 cout << "C++下载视频页面如下: " << endl; CPP cp; cp.header(); cp.footer(); cp.left(); cp.content(); } int main() { test01(); system("pause"); return 0; }

class Base1 { public: int m_A; protected: int m_B; private: int m_C; }; //公共继承 class Son1 :public Base1 { public: void func() { m_A; //可访问 public权限 m_B; //可访问 protected权限 //m_C; //不可访问 } }; void myClass() { Son1 s1; s1.m_A; //其他类只能访问到公共权限 } //保护继承 class Base2 { public: int m_A; protected: int m_B; private: int m_C; }; class Son2:protected Base2 { public: void func() { m_A; //可访问 protected权限 m_B; //可访问 protected权限 //m_C; //不可访问 } }; void myClass2() { Son2 s; //s.m_A; //不可访问 } //私有继承 class Base3 { public: int m_A; protected: int m_B; private: int m_C; }; class Son3:private Base3 { public: void func() { m_A; //可访问 private权限 m_B; //可访问 private权限 //m_C; //不可访问 } }; class GrandSon3 :public Son3 { public: void func() { //Son3是私有继承,所以继承Son3的属性在GrandSon3中都无法访问到 //m_A; //m_B; //m_C; } };

class Base { public: Base() { cout << "Base构造函数!" << endl; } ~Base() { cout << "Base析构函数!" << endl; } }; class Son : public Base { public: Son() { cout << "Son构造函数!" << endl; } ~Son() { cout << "Son析构函数!" << endl; } }; void test01() { //继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反 Son s; } int main() { test01(); system("pause"); return 0; }

总结: 1. 子类对象可以直接访问到子类中同名成员 2. 子类对象加作用域可以访问到父类同名成员 3. 当子类与父类拥有同名的成员函数,子类会隐藏父类中同名成员函数,加作用域可以访问到父类中同名函数 class Base { public: Base() { m_A = 100; } void func() { cout << "Base - func()调用" << endl; } void func(int a) { cout << "Base - func(int a)调用" << endl; } public: int m_A; }; class Son : public Base { public: Son() { m_A = 200; } //当子类与父类拥有同名的成员函数,子类会隐藏父类中所有版本的同名成员函数 //如果想访问父类中被隐藏的同名成员函数,需要加父类的作用域 void func() { cout << "Son - func()调用" << endl; } public: int m_A; }; void test01() { Son s; cout << "Son下的m_A = " << s.m_A << endl; cout << "Base下的m_A = " << s.Base::m_A << endl; s.func(); s.Base::func(); s.Base::func(10); } int main() { test01(); system("pause"); return EXIT_SUCCESS; }

//总结:同名静态成员处理方式和非静态处理方式一样,只不过有两种访问的方式(通过对象 和 通过类名) class Base { public: static void func() { cout << "Base - static void func()" << endl; } static void func(int a) { cout << "Base - static void func(int a)" << endl; } static int m_A; }; int Base::m_A = 100; class Son : public Base { public: static void func() { cout << "Son - static void func()" << endl; } static int m_A; }; int Son::m_A = 200; //同名成员属性 void test01() { //通过对象访问 cout << "通过对象访问: " << endl; Son s; cout << "Son 下 m_A = " << s.m_A << endl; cout << "Base 下 m_A = " << s.Base::m_A << endl; //通过类名访问 cout << "通过类名访问: " << endl; cout << "Son 下 m_A = " << Son::m_A << endl; cout << "Base 下 m_A = " << Son::Base::m_A << endl; } //同名成员函数 void test02() { //通过对象访问 cout << "通过对象访问: " << endl; Son s; s.func(); s.Base::func(); cout << "通过类名访问: " << endl; Son::func(); Son::Base::func(); //出现同名,子类会隐藏掉父类中所有同名成员函数,需要加作作用域访问 Son::Base::func(100); } int main() { //test01(); test02(); system("pause"); return 0; }

class Base1 { public: Base1() { m_A = 100; } public: int m_A; }; class Base2 { public: Base2() { m_A = 200; //开始是m_B 不会出问题,但是改为mA就会出现不明确 } public: int m_A; }; //语法:class 子类:继承方式 父类1 ,继承方式 父类2 class Son : public Base2, public Base1 { public: Son() { m_C = 300; m_D = 400; } public: int m_C; int m_D; }; //多继承容易产生成员同名的情况 //通过使用类名作用域可以区分调用哪一个基类的成员 void test01() { Son s; cout << "sizeof Son = " << sizeof(s) << endl; cout << s.Base1::m_A << endl; cout << s.Base2::m_A << endl; } int main() { test01(); system("pause"); return 0; }
七 多态

class Animal { public: //Speak函数就是虚函数 //函数前面加上virtual关键字,变成虚函数,那么编译器在编译的时候就不能确定函数调用了。 virtual void speak() { cout << "动物在说话" << endl; } }; class Cat :public Animal { public: void speak() { cout << "小猫在说话" << endl; } }; class Dog :public Animal { public: void speak() { cout << "小狗在说话" << endl; } }; //我们希望传入什么对象,那么就调用什么对象的函数 //如果函数地址在编译阶段就能确定,那么静态联编 //如果函数地址在运行阶段才能确定,就是动态联编 void DoSpeak(Animal & animal) { animal.speak(); } // //多态满足条件: //1、有继承关系 //2、子类重写父类中的虚函数 //多态使用: //父类指针或引用指向子类对象 void test01() { Cat cat; DoSpeak(cat); Dog dog; DoSpeak(dog); } int main() { test01(); system("pause"); return 0; }

//普通实现 class Calculator { public: int getResult(string oper) { if (oper == "+") { return m_Num1 + m_Num2; } else if (oper == "-") { return m_Num1 - m_Num2; } else if (oper == "*") { return m_Num1 * m_Num2; } //如果要提供新的运算,需要修改源码 } public: int m_Num1; int m_Num2; }; void test01() { //普通实现测试 Calculator c; c.m_Num1 = 10; c.m_Num2 = 10; cout << c.m_Num1 << " + " << c.m_Num2 << " = " << c.getResult("+") << endl; cout << c.m_Num1 << " - " << c.m_Num2 << " = " << c.getResult("-") << endl; cout << c.m_Num1 << " * " << c.m_Num2 << " = " << c.getResult("*") << endl; } //多态实现 //抽象计算器类 //多态优点:代码组织结构清晰,可读性强,利于前期和后期的扩展以及维护 class AbstractCalculator { public : virtual int getResult() { return 0; } int m_Num1; int m_Num2; }; //加法计算器 class AddCalculator :public AbstractCalculator { public: int getResult() { return m_Num1 + m_Num2; } }; //减法计算器 class SubCalculator :public AbstractCalculator { public: int getResult() { return m_Num1 - m_Num2; } }; //乘法计算器 class MulCalculator :public AbstractCalculator { public: int getResult() { return m_Num1 * m_Num2; } }; void test02() { //创建加法计算器 AbstractCalculator *abc = new AddCalculator; abc->m_Num1 = 10; abc->m_Num2 = 10; cout << abc->m_Num1 << " + " << abc->m_Num2 << " = " << abc->getResult() << endl; delete abc; //用完了记得销毁 //创建减法计算器 abc = new SubCalculator; abc->m_Num1 = 10; abc->m_Num2 = 10; cout << abc->m_Num1 << " - " << abc->m_Num2 << " = " << abc->getResult() << endl; delete abc; //创建乘法计算器 abc = new MulCalculator; abc->m_Num1 = 10; abc->m_Num2 = 10; cout << abc->m_Num1 << " * " << abc->m_Num2 << " = " << abc->getResult() << endl; delete abc; } int main() { //test01(); test02(); system("pause"); return 0; }

class Base { public: //纯虚函数 //类中只要有一个纯虚函数就称为抽象类 //抽象类无法实例化对象 //子类必须重写父类中的纯虚函数,否则也属于抽象类 virtual void func() = 0; }; class Son :public Base { public: virtual void func() { cout << "func调用" << endl; }; }; void test01() { Base * base = NULL; //base = new Base; // 错误,抽象类无法实例化对象 base = new Son; base->func(); delete base;//记得销毁 } int main() { test01(); system("pause"); return 0; }

//抽象制作饮品 class AbstractDrinking { public: //烧水 virtual void Boil() = 0; //冲泡 virtual void Brew() = 0; //倒入杯中 virtual void PourInCup() = 0; //加入辅料 virtual void PutSomething() = 0; //规定流程 void MakeDrink() { Boil(); Brew(); PourInCup(); PutSomething(); } }; //制作咖啡 class Coffee : public AbstractDrinking { public: //烧水 virtual void Boil() { cout << "煮农夫山泉!" << endl; } //冲泡 virtual void Brew() { cout << "冲泡咖啡!" << endl; } //倒入杯中 virtual void PourInCup() { cout << "将咖啡倒入杯中!" << endl; } //加入辅料 virtual void PutSomething() { cout << "加入牛奶!" << endl; } }; //制作茶水 class Tea : public AbstractDrinking { public: //烧水 virtual void Boil() { cout << "煮自来水!" << endl; } //冲泡 virtual void Brew() { cout << "冲泡茶叶!" << endl; } //倒入杯中 virtual void PourInCup() { cout << "将茶水倒入杯中!" << endl; } //加入辅料 virtual void PutSomething() { cout << "加入枸杞!" << endl; } }; //业务函数 void DoWork(AbstractDrinking* drink) { drink->MakeDrink(); delete drink; } void test01() { DoWork(new Coffee); cout << "--------------" << endl; DoWork(new Tea); } int main() { test01(); system("pause"); return 0; }

#include<iostream> using namespace std; //抽象CPU类 class CPU { public: //抽象的计算函数 virtual void calculate() = 0; }; //抽象显卡类 class VideoCard { public: //抽象的显示函数 virtual void display() = 0; }; //抽象内存条类 class Memory { public: //抽象的存储函数 virtual void storage() = 0; }; //电脑类 class Computer { public: Computer(CPU * cpu, VideoCard * vc, Memory * mem) { m_cpu = cpu; m_vc = vc; m_mem = mem; } //提供工作的函数 void work() { //让零件工作起来,调用接口 m_cpu->calculate(); m_vc->display(); m_mem->storage(); } //提供析构函数 释放3个电脑零件 ~Computer() { //释放CPU零件 if (m_cpu != NULL) { delete m_cpu; m_cpu = NULL; } //释放显卡零件 if (m_vc != NULL) { delete m_vc; m_vc = NULL; } //释放内存条零件 if (m_mem != NULL) { delete m_mem; m_mem = NULL; } } private: CPU * m_cpu; //CPU的零件指针 VideoCard * m_vc; //显卡零件指针 Memory * m_mem; //内存条零件指针 }; //具体厂商 //Intel厂商 class IntelCPU :public CPU { public: virtual void calculate() { cout << "Intel的CPU开始计算了!" << endl; } }; class IntelVideoCard :public VideoCard { public: virtual void display() { cout << "Intel的显卡开始显示了!" << endl; } }; class IntelMemory :public Memory { public: virtual void storage() { cout << "Intel的内存条开始存储了!" << endl; } }; //Lenovo厂商 class LenovoCPU :public CPU { public: virtual void calculate() { cout << "Lenovo的CPU开始计算了!" << endl; } }; class LenovoVideoCard :public VideoCard { public: virtual void display() { cout << "Lenovo的显卡开始显示了!" << endl; } }; class LenovoMemory :public Memory { public: virtual void storage() { cout << "Lenovo的内存条开始存储了!" << endl; } }; void test01() { //第一台电脑零件 CPU * intelCpu = new IntelCPU; VideoCard * intelCard = new IntelVideoCard; Memory * intelMem = new IntelMemory; cout << "第一台电脑开始工作:" << endl; //创建第一台电脑 Computer * computer1 = new Computer(intelCpu, intelCard, intelMem); computer1->work(); delete computer1; cout << "-----------------------" << endl; cout << "第二台电脑开始工作:" << endl; //第二台电脑组装 Computer * computer2 = new Computer(new LenovoCPU, new LenovoVideoCard, new LenovoMemory);; computer2->work(); delete computer2; cout << "-----------------------" << endl; cout << "第三台电脑开始工作:" << endl; //第三台电脑组装 Computer * computer3 = new Computer(new LenovoCPU, new IntelVideoCard, new LenovoMemory);; computer3->work(); delete computer3; }
作者:华王
博客:https://www.cnblogs.com/huahuawang/
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 三行代码完成国际化适配,妙~啊~
· .NET Core 中如何实现缓存的预热?