FutureMask

Java Future Task

Java FutureTask通过继承Future和Runnable实现了将Callable封装到Runnable中,便于Thread直接调用,也可以使用线程池调用,并且,可以通过FutureTask对象获取任务执行的结果,是抛出异常了还是其他问题。FutureTask通过内部volatile变量int state进行状态的封装,能够通过state状态变量得知认为执行的结果。并且,使用了CAS进行状态的更新,保证了线程安全。(不会出现ABA,因为从低等级状态到高等级状态不会变回低等级状态,并且final state也无法再变)

Pipeline

整体流程图

State

    /**
     * The run state of this task, initially NEW.  The run state
     * transitions to a terminal state only in methods set,
     * setException, and cancel.  During completion, state may take on
     * transient values of COMPLETING (while outcome is being set) or
     * INTERRUPTING (only while interrupting the runner to satisfy a
     * cancel(true)). Transitions from these intermediate to final
     * states use cheaper ordered/lazy writes because values are unique
     * and cannot be further modified.
     *
     * Possible state transitions:
     * NEW -> COMPLETING -> NORMAL
     * NEW -> COMPLETING -> EXCEPTIONAL
     * NEW -> CANCELLED
     * NEW -> INTERRUPTING -> INTERRUPTED
     */
    private volatile int state;
    // 创建的状态
    private static final int NEW          = 0;
    // 表示正在处理
    private static final int COMPLETING   = 1;
    // final state 无法再次更改的变化
    private static final int NORMAL       = 2; // 正常完成任务
    private static final int EXCEPTIONAL  = 3; // 任务抛出异常
    private static final int CANCELLED    = 4; // 任务取消,但是不中断正在执行的线程
    private static final int INTERRUPTING = 5; // 任务取消,并且正在中断线程
    private static final int INTERRUPTED  = 6; // 已经对线程进行打断

封装Runnable和Callable

通过两个有参构造器直接进行封装,会将FutureTask里面的callable设置为送入的任务,和state变为new

运行

   public void run() {
        if (state != NEW ||  // 当前状态不为new,
            !RUNNER.compareAndSet(this, null, Thread.currentThread())) // 将当前对象的RUNNER设置为当前的线程
            return;  // 如果不为new或者设置失败,直接返回
        try {
            Callable<V> c = callable; // job
            if (c != null && state == NEW) { // 再次判断
                V result; // 用来接受返回的结果
                boolean ran; // 表示是否正确完成
                try {
                    result = c.call(); // 执行
                    ran = true; // 正确执行,
                } catch (Throwable ex) {
                    result = null; // 失败执行
                    ran = false; // 
                    setException(ex); // 设置execption,将result设置为抛出的异常,将this的outcome设置为抛出的异常,并且将状态设置为 exceptional
                }
                if (ran) // 成功运行,设置为normal,此时result就是运行结果,将outcome设置为运行的结果
                    set(result);
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s); // 如果还未设置为interrupted,会一直等待直到设置成功
        }
    }

Cancel

    public boolean cancel(boolean mayInterruptIfRunning) { // mayInterruptIfRunning 在cancel时,如果为true,那么会对运行job的线程进行interrupt,如果不是,那么只进行futuretask state的cancel
        if (!(state == NEW && STATE.compareAndSet
              (this, NEW, mayInterruptIfRunning ? INTERRUPTING : CANCELLED))) // 只有在new状态才进行改变,通过CAS进行设置,ture -> interrupting false -> cancelled
            return false;
        try {    // in case call to interrupt throws exception ture 对线程进行打断
            if (mayInterruptIfRunning) {
                try {
                    Thread t = runner;
                    if (t != null)
                        t.interrupt();
                } finally { // final state
                    STATE.setRelease(this, INTERRUPTED); // 设置为interrupted
                }
            }
        } finally {
            finishCompletion(); //
        }
        return true;
    }

GET

得到当前的运行结果,成功运行,返回结果,失败,直接抛出异常(只有没时间的get,有时间get超过了时间会进行timeouterror)

    public V get() throws InterruptedException, ExecutionException {
        int s = state;
        if (s <= COMPLETING)
            s = awaitDone(false, 0L);
        return report(s);
    }
private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        // The code below is very delicate, to achieve these goals:
        // - call nanoTime exactly once for each call to park
        // - if nanos <= 0L, return promptly without allocation or nanoTime
        // - if nanos == Long.MIN_VALUE, don't underflow
        // - if nanos == Long.MAX_VALUE, and nanoTime is non-monotonic
        //   and we suffer a spurious wakeup, we will do no worse than
        //   to park-spin for a while
        long startTime = 0L;    // Special value 0L means not yet parked
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            int s = state;
            if (s > COMPLETING) { // 
                if (q != null)
                    q.thread = null;
                return s;
            }
            else if (s == COMPLETING)
                // We may have already promised (via isDone) that we are done
                // so never return empty-handed or throw InterruptedException
                Thread.yield();
            else if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }
            else if (q == null) {
                if (timed && nanos <= 0L)
                    return s;
                q = new WaitNode();
            }
            else if (!queued)
                queued = WAITERS.weakCompareAndSet(this, q.next = waiters, q);
            else if (timed) {
                final long parkNanos;
                if (startTime == 0L) { // first time
                    startTime = System.nanoTime();
                    if (startTime == 0L)
                        startTime = 1L;
                    parkNanos = nanos;
                } else {
                    long elapsed = System.nanoTime() - startTime;
                    if (elapsed >= nanos) {
                        removeWaiter(q);
                        return state;
                    }
                    parkNanos = nanos - elapsed;
                }
                // nanoTime may be slow; recheck before parking
                if (state < COMPLETING)
                    LockSupport.parkNanos(this, parkNanos);
            }
            else
                LockSupport.park(this);
        }
    }

简单来说,就是等待状态到达final state,处在completing状态,就让出时间片,进行等待,一直查找。任务进入completing的futuretask马上就要进入final state,就直接进行等待。

大于completing,表示进入了final state,就返回状态并退出,(并且处理waitnode)

并且如果当前执行get方法的线程被interrupted,那么就直接抛出异常。也就是说,该方法对线程中断敏感。

当前是new,并且线程没有打断,那么创建一个新的waitnode,waitnode会将运行get方法的线程进行记录,记录到node的thread中。

之后,入队,头插法进行入队。

在这两步之间如果完成或者打断了,直接退出。并且释放掉waitnode。(出队列表在set和setExecption中执行)

入了对之后,还没有结束,那么调用LockSupprot.park(this)进行阻塞。

finishCompletion

    private void finishCompletion() {
        // assert state > COMPLETING;
        for (WaitNode q; (q = waiters) != null;) {
            if (WAITERS.weakCompareAndSet(this, q, null)) {
                for (;;) {
                    Thread t = q.thread;
                    if (t != null) {
                        q.thread = null;
                        LockSupport.unpark(t);
                    }
                    WaitNode next = q.next;
                    if (next == null)
                        break;
                    q.next = null; // unlink to help gc
                    q = next;
                }
                break;
            }
        }

        done();

        callable = null;        // to reduce footprint
    }

setcancelsetException中调用,进行waitnode的出队和线程的unpark,针对get中调用locksupprot的park的阻塞。

posted @ 2024-07-11 17:41  huahangc  阅读(9)  评论(0编辑  收藏  举报