Liblinear and Libsvm-rank训练数据的bash代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | for j in "amazon_mp3" "video_surveillance" "tablets" "mobilephone" "cameras" "TripAdvisor" "chunyu" "Treebank" "MovieReview" "yelp_review" "LargeMovie" "Electronics_5" "Health_and_Personal_Care_5" "Apps_for_Android_5" "Home_and_Kitchen_5" do echo -e "SVC bias $j " . /train -s 3 -c 0.03125 - v 5 -B 1 -C $j.train . /predict $j. test $j.train.model SVC1.$j.out.txt echo -e "SVOR bias $j " . /train -s 8 -c 0.03125 - v 5 -B 1 -m 2 -C $j.train . /predict $j. test $j.train.model SVOR1.$j.out.txt echo -e "REDSVM bias $j " . /train -s 8 -c 0.03125 - v 5 -B 1 -m 1 -C $j.train . /predict $j. test $j.train.model REDSVM1.$j.out.txt echo -e "SVMOP bias $j " . /train -s 10 -c 0.03125 - v 5 -B 1 -m 2 -C $j.train . /predict $j. test $j.train.model SVMOP1.$j.out.txt echo -e "NPSVOR bias $j " . /train -s 9 -c 0.03125 - v 5 -B 1 -C $j.train . /predict $j. test $j.train.model NPSVOR1.$j.out.txt echo -e "SVR bias $j " . /train -s 13 -c 0.03125 -p 0.1 -B 1 - v 5 -C $j.train . /predict $j. test $j.train.model SVR1.$j.out.txt done data=( "amazon_mp3" "video_surveillance" "tablets" "mobilephone" "cameras" "TripAdvisor" "chunyu" "Treebank" "MovieReview" "yelp_review" "LargeMovie" "Electronics_5" "Health_and_Personal_Care_5" "Apps_for_Android_5" "Home_and_Kitchen_5" ) redsvm=(0.5 1 0.5 0.5 1 0.5 2 0.25 8 0.25 0.25 1 0.5 1 1) svor=(1 1 0.5 0.5 1 0.5 2 2 4 0.25 0.125 1 0.25 1 1) for k in {0..14} do j=${data[$k]} cr=${redsvm[$k]} cs=${svor[$k]} echo -e "SVOR bias $j " . /svm-train -s 6 -t 0 -c $cs $j.train . /svm-predict $j. test $j.train.model SVOR1.$j.out.txt echo -e "REDSVM bias $j " . /svm-train -s 5 -t 0 -c $cr $j.train . /svm-predict $j. test $j.train.model REDSVM1.$j.out.txt done |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
2016-02-24 相关性矩阵的灰阶图