Download datasets iris_training.csv from: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/monitors
Method: SVR
# -*- coding: utf-8 -*- import pandas as pd from sklearn.grid_search import GridSearchCV from sklearn import svm, datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.utils import shuffle import numpy as np from sklearn import metrics df = pd.read_csv('iris_training.csv', header=0) parameters = {'kernel':['rbf'], 'gamma':np.logspace(-5, 0, num=6, base=2.0),'C':np.logspace(-5, 5, num=11, base=2.0)} grid_search = GridSearchCV(svm.SVR(), parameters, cv=10, n_jobs=4, scoring='mean_squared_error') X = df[df.columns.drop('virginica')] y = df['virginica'] X_train, X_test, y_train, y_test = train_test_split(\ X, y, test_size=0.3, random_state=42) random_seed = 13 X_train, y_train = shuffle(X_train, y_train, random_state=random_seed) X_scaler = StandardScaler() X_train = X_scaler.fit_transform(X_train) X_test = X_scaler.transform(X_test) grid_search.fit(X_train,y_train) y_pred = grid_search.predict(X_test) print 'mean_squared_error:'+str(metrics.mean_squared_error(y_test,y_pred)),\ 'r2_score:'+str(metrics.r2_score(y_test,y_pred))
Neural Network:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # -*- coding: utf-8 -*- import pandas as pd from sklearn.grid_search import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.utils import shuffle import numpy as np from sklearn import metrics from sklearn.neural_network import MLPRegressor df = pd.read_csv( 'iris_training.csv' , header = 0 ) #neural networks for regresion parameters = { 'hidden_layer_sizes' :[ 200 , 250 , 300 , 400 , 500 , 600 ], 'activation' :[ 'relu' ]} grid_search = GridSearchCV(MLPRegressor(), parameters, cv = 10 , n_jobs = 4 , scoring = 'mean_squared_error' ) X = df[df.columns.drop( 'virginica' )] y = df[ 'virginica' ] X_train, X_test, y_train, y_test = train_test_split(\ X, y, test_size = 0.3 , random_state = 42 ) random_seed = 13 X_train, y_train = shuffle(X_train, y_train, random_state = random_seed) X_scaler = StandardScaler() X_train = X_scaler.fit_transform(X_train) X_test = X_scaler.transform(X_test) grid_search.fit(X_train,y_train) y_pred = grid_search.predict(X_test) print 'mean_squared_error:' + str (metrics.mean_squared_error(y_test,y_pred)),\ 'r2_score:' + str (metrics.r2_score(y_test,y_pred)) |
标签:
python
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧