MATLAB随机森林回归模型:
调用matlab自带的TreeBagger.m
1 2 3 4 5 6 7 8 9 10 | T= textread ( 'E:\datasets-orreview\discretized-regression\10bins\abalone10\matlab\test_abalone10.2' ); X= textread ( 'E:\datasets-orreview\discretized-regression\10bins\abalone10\matlab\train_abalone10.2' ); %nTree = round(sqrt(size(X,2)-1)); nTree = 50; train_data = X(:,1: end -1);train_label = X(:, end ); test_data = T(:,1: end -1); Factor = TreeBagger(nTree, train_data, train_label, 'Method' , 'regression' ); [Predict_label,Scores] = predict(Factor, test_data); %Predict_label=cellfun(@str2num,Predict_label(1:end)); MZE = mean ( round (Predict_label) ~= T(:, end )) MAE = mean ( abs ( round (Predict_label) - T(:, end ))) |
调用外部函数forestTrain.m来自https://github.com/karpathy/Random-Forest-Matlab
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | T= textread ( 'E:\datasets-orreview\ordinal-regression\ERA\matlab\test_ERA.1' ); X= textread ( 'E:\datasets-orreview\ordinal-regression\ERA\matlab\train_ERA.1' ); opts= struct ; opts.depth= 9; opts.numTrees= 60; opts.numSplits= 5; opts.verbose= true; opts.classifierID= 2; % weak learners to use. Can be an array for mix of weak learners too train_data = X(:,1: end -1);train_label = X(:, end ); test_data = T(:,1: end -1); tic ; m= forestTrain(train_data, train_label, opts); timetrain= toc ; tic ; yhatTrain = forestTest(m, test_data); timetest= toc ; MZE = mean ( round (yhatTrain) ~= T(:, end )) MAE = mean ( abs ( round (yhatTrain) - T(:, end ))) |
标签:
TreeBagger
, 随机森林
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧