clear % http://www.peteryu.ca/tutorials/matlab/visualize_decision_boundaries % load RankData % NumTrain =200; load RankData2 % X = [X, -ones(size(X,1),1)]; lambda = 20; rho = 2; c1 =10; c2 =10; epsilon = 0.2; result=[]; ker = 'linear'; ker = 'rbf'; sigma = 1/200; method=4 contour_level1 = [-epsilon,0, epsilon]; contour_level2 = [-epsilon,0, epsilon]; xrange = [-5 5]; yrange = [-5 5]; % step size for how finely you want to visualize the decision boundary. inc = 0.1; % generate grid coordinates. this will be the basis of the decision % boundary visualization. [x1, x2] = meshgrid(xrange(1):inc:xrange(2), yrange(1):inc:yrange(2)); % size of the (x, y) image, which will also be the size of the % decision boundary image that is used as the plot background. image_size = size(x1) xy = [x1(:) x2(:)]; % make (x,y) pairs as a bunch of row vectors. %xy = [reshape(x, image_size(1)*image_size(2),1) reshape(y, image_size(1)*image_size(2),1)] % loop through each class and calculate distance measure for each (x,y) % from the class prototype. % calculate the city block distance between every (x,y) pair and % the sample mean of the class. % the sum is over the columns to produce a distance for each (x,y) % pair. switch method case 1 par = NonLinearDualSVORIM(X, y, c1, c2, epsilon, rho, ker, sigma); f = TestPrecisionNonLinear(par,X, y,X, y, ker,epsilon,sigma); % set up the domain over which you want to visualize the decision % boundary d = []; for k=1:max(y) d(:,k) = decisionfun(xy, par, X,y,k,epsilon, ker,sigma)'; end [~,idx] = min(abs(d)/par.normw{k},[],2); case 2 par = NonLinearDualBoundSVORIM(X, y, c1, c2, epsilon, rho, ker, sigma); f = TestPrecisionNonLinear(par,X, y,X, y, ker,epsilon,sigma); % set up the domain over which you want to visualize the decision % boundary d = []; for k=1:max(y) d(:,k) = decisionfun(xy, par, X,y,k,epsilon, ker,sigma)'; end [~,idx] = min(abs(d)/par.normw{k},[],2); contour_level=contour_level1; case 3 % par = NewSVORIM(X, y, c1, c2, epsilon, rho); par = LinearDualSVORIM(X,y, c1, c2, epsilon, rho); % ADMM for linear dual model d = []; for k=1:max(y) w= par.w(:,k)'; d(:,k) = w*xy'-par.b(k); end [~,idx] = min(abs(d)/norm(par.w),[],2); contour_level=contour_level1; case 4 path='C:\Users\hd\Desktop\svorim\svorim\'; name='RankData2'; k=0; fname1 = strcat(path, name,'_train.', num2str(k)); fname2 = strcat(path, name,'_targets.', num2str(k)); fname2 = strcat(path, name,'_test.', num2str(k)); Data=[X y]; save(fname1,'Data','-ascii'); save(fname2,'y','-ascii'); save(fname2,'X','-ascii'); command= strcat(path,'svorim -F 1 -Z 0 -Co 10 -p 0 -Ko 1 C:\Users\hd\Desktop\svorim\svorim\', name, '_train.', num2str(k)); % command= 'C:\Users\hd\Desktop\svorim\svorim\svorim -F 1 -Z 0 -Co 10 C:\Users\hd\Desktop\svorim\svorim\RankData2_train.0'; % command='C:\Users\hd\Desktop\svorim\svorim\svorim -F 1 -Z 0 -Co 10 G:\datasets-orreview\discretized-regression\5bins\X4058\matlab\mytask_train.0' dos(command); fname2 = strcat(fname1, '.svm.alpha'); alpha_bais = textread(fname2); r=length(unique(y)); model.alpha=alpha_bais(1:end-r+1); model.b=alpha_bais(end-r+2:end); for k=1:r-1 d(:,k)=model.alpha'*Kernel(ker,X',xy',sigma)- model.b(k); end pretarget=[];idx=[]; for i=1:size(X,1) idx(i) = min([find(d(i,:)<0,1,'first'),length(model.b)+1]); end contour_level=contour_level2; end % % reshape the idx (which contains the class label) into an image. % decisionmap = reshape(idx, image_size); % % figure(7); % %show the image % imagesc(xrange,yrange,decisionmap); % hold on; % set(gca,'ydir','normal'); % % % colormap for the classes: % % class 1 = light red, 2 = light green, 3 = light blue % cmap = [1 0.8 0.8; 0.95 1 0.95; 0.9 0.9 1]; % colormap(cmap); % % imagesc(xrange,yrange,decisionmap); % plot the class training data. color = {'r.','go','b*','r.','go','b*'}; for i=1:max(y) plot(X(y==i,1),X(y==i,2), color{i}); hold on end % include legend % legend('Class 1', 'Class 2', 'Class 3','Location','NorthOutside', ... % 'Orientation', 'horizontal'); legend('Class 1', 'Class 2', 'Class 3'); set(gca,'ydir','normal'); hold on for k = 1:max(y)-1 decisionmapk = reshape(d(:,k), image_size); contour(x1,x2, decisionmapk, [contour_level(1) contour_level(1) ], color{k},'Fill','off'); contour(x1,x2, decisionmapk, [contour_level(2) contour_level(2) ], color{k},'Fill','off','LineWidth',2); contour(x1,x2, decisionmapk, [contour_level(3) contour_level(3) ], color{k},'Fill','off'); % if k<max(y) % contour(x1,x2, decisionmap, [k+1 k+1], color{k},'Fill','off'); % end end hold off % % label the axes. xlabel('x1'); ylabel('x2');
这里执行的是chu wei的支持向量顺序回归机模型SVORIM