SVMtoy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | [label_matrix, instance_matrix] = libsvmread( 'ex8b.txt' ); options = '' ; % contour_level = [-1 0 1]; contour_level = [-0.2 0.2 1 2]; % function svmtoy(label_matrix, instance_matrix, options, contour_level) %% svmtoy(label_matrix, instance_matrix, options, contour_level) %% label_matrix: N by 1, has to be two-class %% instance_matrix: N by 2 %% options: default '', %% see libsvm-mat-8 README, has to be a classification formulation. %% contour_level: default [0 0], %% change to [-1 0 1] for showing the +/- 1 margin. %% %% svmtoy shows the two-class classification boundary of the 2-D data %% based on libsvm-mat-2.8 %% %% Hsuan-Tien Lin, htlin at caltech.edu, 2006/04/07 % if nargin <= 1 % instance_matrix = []; % elseif nargin == 2 % options = '' % end % % if nargin <= 3 % contour_level = [-1 0 1]; % end N = size (label_matrix, 1); if N <= 0 fprintf (2, 'number of data should be positive\n' ); return ; end if size (label_matrix, 2) ~= 1 fprintf (2, 'the label matrix should have only one column\n' ); return ; end if size (instance_matrix, 1) ~= N fprintf (2, [ 'the label and instance matrices should have the same ' ... 'number of rows\n' ]); return ; end if size (instance_matrix, 2) ~= 2 fprintf (2, 'svmtoy only works for 2-D data\n' ); return ; end mdl = svmtrain(label_matrix, instance_matrix, options); nclass = mdl.nr_class; svmtype = mdl.Parameters(1); if nclass ~= 2 || svmtype >= 2 fprintf (2, [ 'cannot plot the decision boundary for these ' ... 'SVM problems\n' ]); return end minX = min (instance_matrix(:, 1)); maxX = max (instance_matrix(:, 1)); minY = min (instance_matrix(:, 2)); maxY = max (instance_matrix(:, 2)); gridX = (maxX - minX) ./ 100; gridY = (maxY - minY) ./ 100; minX = minX - 10 * gridX; maxX = maxX + 10 * gridX; minY = minY - 10 * gridY; maxY = maxY + 10 * gridY; [bigX, bigY] = meshgrid (minX:gridX:maxX, minY:gridY:maxY); mdl.Parameters(1) = 3; % the trick to get the decision values ntest= size (bigX, 1) * size (bigX, 2); instance_test=[ reshape (bigX, ntest, 1), reshape (bigY, ntest, 1)]; label_test = zeros ( size (instance_test, 1), 1); [Z]= svmpredict(label_test, instance_test, mdl); bigZ = reshape (Z, size (bigX, 1), size (bigX, 2)); clf ; hold on; ispos = (label_matrix == label_matrix(1)); pos = find (ispos); neg = find (~ispos); plot (instance_matrix(pos, 1), instance_matrix(pos, 2), 'o' ); plot (instance_matrix(neg, 1), instance_matrix(neg, 2), 'x' ); contour (bigX, bigY, bigZ, contour_level); title (options); |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧