1 | [tengzhenzhen15@lu01 gpor]$ for ((i=0; i<=19; i++)) do . /gpor -S 0.4 X4058_300_gpor /mytask_train .$((i)); done |
1 2 3 | [yuanhao15@lu01 gpor]$ . /svorex -P 1 -F 1 -Z 0 -Co 10 .. /svorim/X4058_300_im/mytask_train .0 [tengzhenzhen15@lu01 gpor]$ . /gpor -S 0.4 X4058_300_gpor /mytask_train .0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | % load pyrim % NumTrain = 50; % load machine %NumTrain = 150; % load housing % NumTrain = 300; % load abalone % NumTrain = 1000; % load bank32nh % NumTrain = 3000; % load cpuact % NumTrain = 4000; % load calhousing % NumTrain = 5000; % load census % NumTrain = 6000; load X4058 NumTrainforScaling = [300,400] ; % name='X4058_300_im' name= 'X4058_300_gpor' i =1; % path= 'C:\Users\hd\Desktop\' path = 'G:\'; NumTrain = NumTrainforScaling( i ); % X0=[X,y]; % n0 = size(X0,2); % X0 = sortrows(X0,n0); % X = X0(:,1:end-1); % y = X0(:,end); for k = 1:20 n = size (X,1); NumTest = n - NumTrain; id = id0(k,:); traindata = X(id(1:NumTrain),:); targets = y(id(1:NumTrain)); TestData = X(id(NumTrain+1:n),:); TestTargets = y(id(NumTrain+1:n)); X1=[traindata,targets]; n0 = size (X1,2); X1 = sortrows (X1,n0); fname1 = strcat ( path ,name, '\mytask_train.' , num2str (k-1)); fname2 = strcat ( path ,name, '\mytask_test.' , num2str (k-1)); fname3 = strcat ( path ,name, '\mytask_targets.' , num2str (k-1)); % libsvmwrite(fname1, targets, sparse(traindata)); % libsvmwrite(fname2, TestTargets, sparse(TestData)); fname4 = strcat ( 'E:\MATLAB\R2015a\bin\ADMM\CalOutData\mytask_targets.' , num2str (k-1)); save (fname1, 'X1' , '-ascii' ) save (fname2, 'TestData' , '-ascii' ) save (fname3, 'TestTargets' , '-ascii' ) save (fname4, 'TestTargets' , '-ascii' ) end % load calhousing % NumTrainforScaling = [300,400] ; % % i=1; % NumTrain = NumTrainforScaling(i); % for k=1:20 % k=i; % % for k = 1:10 % n = size(X,1); % NumTest = n - NumTrain; % % id = randperm(n); % id = id0(k,:); % traindata = X(id(1:NumTrain),:); % targets = y(id(1:NumTrain)); % TestData = X(id(NumTrain+1:n),:); % TestTargets = y(id(NumTrain+1:n)); % % % X1=[traindata,targets]; % % % fname1 = strcat('C:\Users\hd\Desktop\machine\mytask_train.',num2str(k-1)); % % fname2 = strcat('C:\Users\hd\Desktop\machine\mytask_test.',num2str(k-1)); % % % fname1 = strcat('C:\Users\hd\Desktop\housing\mytask_train.',num2str(k-1)); % % fname2 = strcat('C:\Users\hd\Desktop\housing\mytask_test.',num2str(k-1)); % % % fname1 = strcat('C:\Users\hd\Desktop\abalone\mytask_train.',num2str(k-1)); % % fname2 = strcat('C:\Users\hd\Desktop\abalone\mytask_test.',num2str(k-1)); % % % fname1 = strcat('C:\Users\hd\Desktop\bank32nh\mytask_train.',num2str(k-1)); % % fname2 = strcat('C:\Users\hd\Desktop\bank32nh\mytask_test.',num2str(k-1)); % % % fname1 = strcat('C:\Users\hd\Desktop\cpuact\mytask_train.',num2str(k-1)); % % fname2 = strcat('C:\Users\hd\Desktop\cpuact\mytask_test.',num2str(k-1)); % % % fname1 = strcat('C:\Users\hd\Desktop\calhousing\mytask_train.',num2str(k-1)); % % fname2 = strcat('C:\Users\hd\Desktop\calhousing\mytask_test.',num2str(k-1)); % % % fname1 = strcat('C:\Users\hd\Desktop\census\mytask_train.',num2str(k-1)); % % fname2 = strcat('C:\Users\hd\Desktop\census\mytask_test.',num2str(k-1)); % % fname1 = strcat('C:\Users\hd\Desktop\',name,'\mytask_train.',num2str(k-1)); % fname2 = strcat('C:\Users\hd\Desktop\',name,'\mytask_test.',num2str(k-1)); % libsvmwrite(fname1, targets, sparse(traindata)); % libsvmwrite(fname2, TestTargets, sparse(TestData)); % % % % save(fname1,'X1','-ascii') % % save(fname2,'TestData','-ascii') % % save(fname3,'TestTargets','-ascii') % % % libsvmwrite(fname1, targets, sparse(traindata)); % % libsvmwrite(fname2, TestTargets, sparse(TestData)); |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | clear Acc=[]; AbsAcc=[]; for k =1:20 fname1 = strcat ( 'E:\MATLAB\R2015a\bin\ADMM\CalOutData\mytask_targets.' , num2str (k-1)); % fname2 = strcat('E:\MATLAB\R2015a\bin\ADMM\CalOutData\output_file.',num2str(k-1)); fname2 = strcat ( 'E:\MATLAB\R2015a\bin\ADMM\CalOutData\mytask_cguess.' , num2str (k-1)); PredYi= textread (fname1); Yi= textread (fname2); D=PredYi-Yi; TrueD = D; TrueD( abs (TrueD)>0,1)=1; Error(k) = mean (TrueD); AbsErr(k) = mean ( abs (D)); end |
1 2 3 4 5 | [tengzhenzhen15@lu01 gpor]$ for ((i=0; i<=19; i++)) do ./gpor -S 0.4 pyrim/mytask_train.$((i)); done [tengzhenzhen15@lu01 gpor]$ for ((i=0; i<=19; i++)) do ./gpor machine/mytask_train.$((i)); done [tengzhenzhen15@lu01 gpor]$ for ((i=0; i<=19; i++)) do ./gpor housing/mytask_train.$((i)); done |
标签:
svorex
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧