Linux Bash代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | [yuanhao15@lu01 libsvm-rank-2.81]$ for ((i=0; i<=19; i++)) do ./svm-train -s 5 -c 10 -t 0 X4058_300/mytask_train.$((i)); done [yuanhao15@lu01 libsvm-rank-2.81]$ for ((i=0; i<=19; i++)) do ./svm-predict X4058_300/mytask_test.$((i)) mytask_train.$((i)).model output_file.$((i)); done Accuracy = 33.9901% (69/203) (classification) Mean absolute error = 0.906404 (regression) Squared correlation coefficient = 0.194913 (regression) Accuracy = 33.0049% (67/203) (classification) Mean absolute error = 0.916256 (regression) Squared correlation coefficient = 0.15242 (regression) Accuracy = 26.601% (54/203) (classification) Mean absolute error = 1.03941 (regression) Squared correlation coefficient = 0.0883807 (regression) Accuracy = 29.5567% (60/203) (classification) Mean absolute error = 0.990148 (regression) Squared correlation coefficient = 0.105375 (regression) Accuracy = 36.4532% (74/203) (classification) Mean absolute error = 0.876847 (regression) Squared correlation coefficient = 0.185002 (regression) Accuracy = 27.5862% (56/203) (classification) Mean absolute error = 1.02463 (regression) Squared correlation coefficient = 0.0996877 (regression) Accuracy = 32.0197% (65/203) (classification) Mean absolute error = 0.931034 (regression) Squared correlation coefficient = 0.152379 (regression) Accuracy = 31.0345% (63/203) (classification) Mean absolute error = 0.965517 (regression) Squared correlation coefficient = 0.140663 (regression) Accuracy = 29.064% (59/203) (classification) Mean absolute error = 1 (regression) Squared correlation coefficient = 0.178278 (regression) Accuracy = 30.5419% (62/203) (classification) Mean absolute error = 0.945813 (regression) Squared correlation coefficient = 0.176329 (regression) Accuracy = 37.4384% (76/203) (classification) Mean absolute error = 0.832512 (regression) Squared correlation coefficient = 0.279723 (regression) Accuracy = 32.0197% (65/203) (classification) Mean absolute error = 0.945813 (regression) Squared correlation coefficient = 0.160936 (regression) Accuracy = 29.5567% (60/203) (classification) Mean absolute error = 0.975369 (regression) Squared correlation coefficient = 0.175127 (regression) Accuracy = 26.1084% (53/203) (classification) Mean absolute error = 1.0197 (regression) Squared correlation coefficient = 0.123619 (regression) Accuracy = 33.0049% (67/203) (classification) Mean absolute error = 0.990148 (regression) Squared correlation coefficient = 0.0964109 (regression) Accuracy = 32.5123% (66/203) (classification) Mean absolute error = 0.926108 (regression) Squared correlation coefficient = 0.195953 (regression) Accuracy = 28.5714% (58/203) (classification) Mean absolute error = 0.995074 (regression) Squared correlation coefficient = 0.140257 (regression) Accuracy = 33.4975% (68/203) (classification) Mean absolute error = 0.896552 (regression) Squared correlation coefficient = 0.22211 (regression) Accuracy = 39.4089% (80/203) (classification) Mean absolute error = 0.857143 (regression) Squared correlation coefficient = 0.219532 (regression) Accuracy = 34.9754% (71/203) (classification) Mean absolute error = 0.935961 (regression) Squared correlation coefficient = 0.145034 (regression) |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧