Live2d Test Env

BZOJ-3881:Divljak (AC自动机+DFS序+树链求并+树状数组)

Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的。
接下来会发生q个操作,操作有两种形式:
“1 P”,Bob往自己的集合里添加了一个字符串P。
“2 x”,Alice询问Bob,集合T中有多少个字符串包含串S_x。(我们称串A包含串B,当且仅当B是A的子串)
Bob遇到了困难,需要你的帮助。
 
 

 

Input

第1行,一个数n;
接下来n行,每行一个字符串表示S_i;
下一行,一个数q;
接下来q行,每行一个操作,格式见题目描述。

 

Output

对于每一个Alice的询问,帮Bob输出答案。

 

Sample Input

3
a
bc
abc
5
1 abca
2 1
1 bca
2 2
2 3

Sample Output

1
2
1

Hint

 

【数据范围】

1 <= n,q <= 100000;

Alice和Bob拥有的字符串长度之和各自都不会超过 2000000;

字符串都由小写英文字母组成。

 

之前就看过此题,但是不会树链求并,就搁着了。现在回来看还是可以做的。

      Alice在字符串集合为S,Bob的字符串集合为T。先对Alice的集合建立AC自动机,得到Fail树。对于T每次新加的字符串Str,Str在自动机上跑。能跑到的所有 位置,在Fail树上对应的位置到根的所有点都要加1,重复的不重复加,就涉及到去重,即用树链求并。

     把跑到是所有位置对应的Fail树位置按DFS序排序,每一个位置+1,相邻的LCA位置处-1。那么求T中有几个串含有某Si时,即是求Si在Fail树上的子树值之和。这里倍增求LCA会超时。

 

这个人的代码风格和我一模一样哎(但是他的AC自动机写丑了)!!!因为是权限题,自己写一遍怕错了没法知晓,就假设我写了,去找个差不多的题写写,233。

 

#include<bits/stdc++.h>
using namespace std;
   
#define N 2002010
int ch[N][26],fail[N],ins[N],cnt;
char s[N];
   
int head[N],next[N],end[N];
inline void addedge(int a,int b){
    static int q=1;end[q]=b,next[q]=head[a],head[a]=q++;
}
   
int in[N],out[N],dep[N],tclock;
void dfs(int x){
    in[x]=++tclock;
    for(int j=head[x];j;j=next[j])
        dep[end[j]]=dep[x]+1,dfs(end[j]);
    out[x]=tclock;
}
  
namespace Lca_system{
    int Seq[N<<1],a[8383608],M,ins[N],cnt;
    inline void build_dfs(int x){
        ins[x]=++cnt;
        Seq[cnt]=x;
        for(int j=head[x];j;j=next[j]){
            build_dfs(end[j]);
            Seq[++cnt]=x;
        }
    }
    inline int Min(int x,int y){
        if(x==-1||y==-1)return x==-1?y:x;
        return dep[x]<dep[y]?x:y;
    }
    inline void init(){
        build_dfs(0);
        for(M=1;M<cnt+2;M<<=1);
        memset(a,-1,sizeof a);
        for(int i=1;i<=cnt;++i)a[M+i]=Seq[i];
        for(int i=M-1;i>=1;--i)a[i]=Min(a[2*i],a[2*i+1]);
    }
    inline int ask(int tl,int tr){
        int re=-1;
        for(tl+=M-1,tr+=M+1;tl^tr^1;tl>>=1,tr>>=1){
            if(~tl&1)re=Min(re,a[tl^1]);
            if(tr&1)re=Min(re,a[tr^1]);
        }
        return re;
    }
    inline int lca(int x,int y){
        x=ins[x],y=ins[y];
        if(x>y)swap(x,y);
        return ask(x,y);
    }
}
  
int seq[N],num;
   
int A[N];
inline void modify(int x,int c){
    for(;x<=cnt+1;x+=x&-x)A[x]+=c;
}
inline int ask(int x){
    int re=0;for(;x;x-=x&-x)re+=A[x];return re;
}
   
inline bool cmp(const int&x,const int&y){return in[x]<in[y];}
   
inline int git(){
    int c,re;
    while(!isdigit(c=getchar()));
    re=c-'0';
    while(isdigit(c=getchar()))re=(re<<1)+(re<<3)+c-'0';
    return re;
}
char buf[100010*6],*o=buf;
inline void print(int x){
    static int s[100];int top=0;
    if(!x)*o++=48;else{for(;x;x/=10)s[++top]=x%10;for(int i=top;i>=1;--i)*o++=48+s[i];}
    *o++='\n';
}
int main(){
    int n=git();
    register int i,j;
       
    int len,p;
    for(i=1;i<=n;++i){
        scanf("%s",s);
        len=strlen(s),p=0;
        for(j=0;j<len;++j){
            if(!ch[p][s[j]-'a'])ch[p][s[j]-'a']=++cnt;
            p=ch[p][s[j]-'a'];
        }
        ins[i]=p;
    }
       
    queue<int>q;
    for(i=0;i<26;++i) if(ch[0][i]) q.push(ch[0][i]);
    int u,v,r;
    while(!q.empty()){
        u=q.front(),q.pop();
        for(i=0;i<26;++i)if((v=ch[u][i])){
            q.push(v);
            for(r=fail[u];r&&!ch[r][i];r=fail[r]);
            fail[v]=ch[r][i];
        }
    }
       
    for(i=1;i<=cnt;++i) addedge(fail[i],i);
    dep[0]=1,dfs(0);
    Lca_system::init();
       
    int Q=git();
       
    int qte,x;
    while(Q--){
        qte=git();
        if(qte==1){
            scanf("%s",s);
            len=strlen(s),p=0,num=0;
            for(i=0;i<len;++i){
                while(p&&!ch[p][s[i]-'a'])p=fail[p];
                p=ch[p][s[i]-'a'];
                if(p) seq[++num]=p;
            }
            sort(seq+1,seq+num+1,cmp);
            for(i=1;i<=num;++i)modify(in[seq[i]],1);
            for(i=1;i<num;++i)modify(in[Lca_system::lca(seq[i],seq[i+1])],-1);
        }
        else{
            x=git();
            print(ask(out[ins[x]])-ask(in[ins[x]]-1));
        }
    }
       
    fwrite(buf,1,o-buf,stdout);
    return 0;
}

 

 

posted @ 2018-07-02 14:13  nimphy  阅读(300)  评论(0编辑  收藏  举报