HihoCoder - 1652:三角形面积和2(扫描线)
题意:给定X轴上的一些三角形,求面积并。 每个三角形的给出形式是Li,Ri,Xi,Yi,表示三个顶点分别是(Li,0);(Ri,0);(Xi,Yi),且满足Li<=Xi<=Ri;
思路:我们把这些三角形全部涂黑,就会发现只需要找到这些关键的“拐点”即可,最后求出每两个拐点之间形成的梯形的面积即可。 那么为了找拐点,我们需要把所有的X求出来,然后用这些X和线段树求交点,每个X保留一个最高的Y,这个就是拐点了。
#include<bits/stdc++.h> #define rep(i,a,b) for(int i=a;i<=b;i++) using namespace std; typedef long long ll; const double eps=1e-3; const double pi=acos(-1.0); struct point{ double x,y; point(double a=0,double b=0):x(a),y(b){} }; int dcmp(double x){ return fabs(x)<eps?0:(x<0?-1:1);} point operator +(point A,point B) { return point(A.x+B.x,A.y+B.y);} point operator -(point A,point B) { return point(A.x-B.x,A.y-B.y);} point operator *(point A,double p){ return point(A.x*p,A.y*p);} point operator /(point A,double p){ return point(A.x/p,A.y/p);} point rotate(point A,double rad){ //向量的旋转 return point(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad)); } bool operator ==(const point& a,const point& b) { return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0; } double dot(point A,point B){ return A.x*B.x+A.y*B.y;} double det(point A,point B){ return A.x*B.y-A.y*B.x;} double dot(point O,point A,point B){ return dot(A-O,B-O);} double det(point O,point A,point B){ return det(A-O,B-O);} double length(point A){ return sqrt(dot(A,A));} double angle(point A,point B){ return acos(dot(A,B)/length(A)/length(B));} //夹角 point jiaopoint(point p,point v,point q,point w) //如果平行,除0会有问题 { //p+tv q+tw,点加向量表示直线,求直线交点 //如果是线段,还应该实现判定是否相离或者平行 point u=p-q; double t=det(w,u)/det(v,w); return p+v*t; } point GetCirPoint(point a,point b,point c) { point p=(a+b)/2; //ab中点 point q=(a+c)/2; //ac中点 point v=rotate(b-a,pi/2.0),w=rotate(c-a,pi/2.0); //中垂线的方向向量 if (dcmp(length(det(v,w)))==0) //平行 { if(dcmp(length(a-b)+length(b-c)-length(a-c))==0) return (a+c)/2; if(dcmp(length(b-a)+length(a-c)-length(b-c))==0) return (b+c)/2; if(dcmp(length(a-c)+length(c-b)-length(a-b))==0) return (a+b)/2; } return jiaopoint(p,v,q,w); } int main() { }
当然也可以直接套多边形面积并的板子:
#include<bits/stdc++.h> using namespace std; #define mp make_pair typedef long long ll; const double inf=1e200; const double eps=1e-12; const double pi=4*atan(1.0); int dcmp(double x){ return fabs(x)<eps?0:(x<0?-1:1);} struct point{ double x,y; point(double a=0,double b=0):x(a),y(b){} }; point operator +(point A,point B) { return point(A.x+B.x,A.y+B.y);} point operator -(point A,point B) { return point(A.x-B.x,A.y-B.y);} point operator *(point A,double p){ return point(A.x*p,A.y*p);} point operator /(point A,double p){ return point(A.x/p,A.y/p);} bool operator ==(const point& a,const point& b){ return fabs(a.x-b.x)<eps&&fabs(a.y-b.y)<eps; } double dot(point A,point B){ return A.x*B.x+A.y*B.y;} double det(point A,point B){ return A.x*B.y-A.y*B.x;} double det(point O,point A,point B){ return det(A-O,B-O);} double length(point A){ return sqrt(dot(A,A));} double area(vector<point>p){ double ans=0; int sz=p.size(); for(int i=1;i<sz-1;i++) ans+=det(p[i]-p[0],p[i+1]-p[0]); return ans/2.0; } double seg(point O,point A,point B){ if(dcmp(B.x-A.x)==0) return (O.y-A.y)/(B.y-A.y); return (O.x-A.x)/(B.x-A.x); } vector<point>pp[110]; pair<double,int>s[110*60]; double polyunion(vector<point>*p,int N){ //需要这些点是顺时针 double res=0; for(int i=0;i<N;i++){ int sz=p[i].size(); for(int j=0;j<sz;j++){ int m=0; s[m++]=mp(0,0); s[m++]=mp(1,0); point a=p[i][j],b=p[i][(j+1)%sz]; for(int k=0;k<N;k++){ if(i!=k){ int sz2=p[k].size(); for(int ii=0;ii<sz2;ii++){ point c=p[k][ii],d=p[k][(ii+1)%sz2]; int c1=dcmp(det(b-a,c-a)); int c2=dcmp(det(b-a,d-a)); if(c1==0&&c2==0){ if(dcmp(dot(b-a,d-c))){ s[m++]=mp(seg(c,a,b),1); s[m++]=mp(seg(c,a,b),-1); } } else{ double s1=det(d-c,a-c); double s2=det(d-c,b-c); if(c1>=0&&c2<0) s[m++]=mp(s1/(s1-s2),1); else if(c1<0&&c2>=0) s[m++]=mp(s1/(s1-s2),-1); } } } } sort(s,s+m); double pre=min(max(s[0].first,0.0),1.0),now,sum=0; int cov=s[0].second; for(int j=1;j<m;j++){ now=min(max(s[j].first,0.0),1.0); if(!cov) sum+=now-pre; cov+=s[j].second; pre=now; } res+=det(a,b)*sum; } } return res/2; } int main() { int N,M,i,j; point tp,ta,tb; ta.y=tb.y=0.0; scanf("%d",&N); for(i=0;i<N;i++){ scanf("%lf%lf%lf%lf",&ta.x,&tb.x,&tp.x,&tp.y); pp[i].push_back(tb); pp[i].push_back(ta); pp[i].push_back(tp); } double t1=0,t2=polyunion(pp,N); for(i=0;i<N;i++) t1+=area(pp[i]); printf("%.2lf\n",-t2); return 0; }
It is your time to fight!