HDU - 5130 :Signal Interference (多边形与圆的交)
pro:A的监视区域是一个多边形。 如果A的监视区的内满足到A的距离到不超过到B的距离的K倍的面积大小。K<1
sol:高中几何体经验告诉我们满足题意的区域是个圆,那么就是求圆与多边形的交。
#include<bits/stdc++.h> #define rep(i,a,b) for(int i=a;i<=b;i++) using namespace std; const int maxn=200010; const double eps=1e-12; struct point{ double x,y; point(){} point(double xx,double yy):x(xx),y(yy){} }; struct Circle{ point c; double r; }; double det(point a,point b){ return a.x*b.y-a.y*b.x;} double dot(point a,point b){ return a.x*b.x+a.y*b.y;} point operator *(point a,double t){ return point(a.x*t,a.y*t);} point operator +(point a,point b){ return point(a.x+b.x,a.y+b.y);} point operator -(point a,point b){ return point(a.x-b.x,a.y-b.y);} double Length(point A){return sqrt(dot(A,A));} int dcmp(double x){ if(fabs(x)<eps) return 0; if(x<0) return -1; return 1; } double TriAngleCircleInsection(Circle C, point A, point B) { point OA=A-C.c,OB=B-C.c; point BA=A-B, BC=C.c-B; point AB=B-A, AC=C.c-A; double DOA=Length(OA),DOB=Length(OB),DAB=Length(AB),r=C.r; if(dcmp(det(OA,OB))==0) return 0; //,三点一线,不构成三角形 if(dcmp(DOA-C.r)<0&&dcmp(DOB-C.r)<0) return det(OA,OB)*0.5; //内部 else if(DOB<r&&DOA>=r) //一内一外 { double x=(dot(BA,BC)+sqrt(r*r*DAB*DAB-det(BA,BC)*det(BA,BC)))/DAB; double TS=det(OA,OB)*0.5; return asin(TS*(1-x/DAB)*2/r/DOA)*r*r*0.5+TS*x/DAB; } else if(DOB>=r&&DOA<r)// 一外一内 { double y=(dot(AB,AC)+sqrt(r*r*DAB*DAB-det(AB,AC)*det(AB,AC)))/DAB; double TS=det(OA,OB)*0.5; return asin(TS*(1-y/DAB)*2/r/DOB)*r*r*0.5+TS*y/DAB; } else if(fabs(det(OA,OB))>=r*DAB||dot(AB,AC)<=0||dot(BA,BC)<=0)//弧 { if(dot(OA,OB)<0){ if(det(OA,OB)<0) return (-acos(-1.0)-asin(det(OA,OB)/DOA/DOB))*r*r*0.5; else return ( acos(-1.0)-asin(det(OA,OB)/DOA/DOB))*r*r*0.5; } else return asin(det(OA,OB)/DOA/DOB)*r*r*0.5; //小于90度,以为asin对应的区间是[-90度,90度] } else //弧+三角形 { double x=(dot(BA,BC)+sqrt(r*r*DAB*DAB-det(BA,BC)*det(BA,BC)))/DAB; double y=(dot(AB,AC)+sqrt(r*r*DAB*DAB-det(AB,AC)*det(AB,AC)))/DAB; double TS=det(OA,OB)*0.5; return (asin(TS*(1-x/DAB)*2/r/DOA)+asin(TS*(1-y/DAB)*2/r/DOB))*r*r*0.5 + TS*((x+y)/DAB-1); } } point a[maxn]; int main() { int N,T,Ca=0; double K,ans; while (~scanf("%d%lf",&N,&K)) { rep(i,1,N) scanf("%lf%lf",&a[i].x,&a[i].y); a[N+1]=a[1]; point A,B; Circle C; scanf("%lf%lf",&A.x,&A.y); scanf("%lf%lf",&B.x,&B.y); K=K*K; C.c.x=(B.x-A.x*K)/(1-K); C.c.y=(B.y-A.y*K)/(1-K); double ta=(K*A.x*A.x-B.x*B.x)/(1-K); double tb=pow((K*A.x-B.x)/(1-K),2); double tc=(K*A.y*A.y-B.y*B.y)/(1-K); double td=pow((K*A.y-B.y)/(1-K),2); C.r=sqrt(ta+tb+tc+td); ans=0; rep(i,1,N){ ans+=TriAngleCircleInsection(C,a[i],a[i+1]); } printf("Case %d: %.10lf\n",++Ca,fabs(ans)); } return 0; }
It is your time to fight!