Live2d Test Env

CF-1055E:Segments on the Line (二分&背包&DP优化)(nice problem)

You are a given a list of integers

You need to select exactly

The

Input

The first line contains four integers

The second line contains

Each of the next

It is possible that some segments coincide.

Output

Print exactly one integer — the smallest possible

Examples
Input
4 3 2 2
3 1 3 2
1 2
2 3
4 4
Output
2
Input
5 2 1 1
1 2 3 4 5
2 4
1 5
Output
1
Input
5 3 3 5
5 5 2 1 1
1 2
2 3
3 4
Output
-1

题意:给定给N个点,以及M个线段,让你选择S个线段,使得至少被一个线段覆盖的点排序后,第K大最小,没有则输出-1。

思路:求第K大最小,显然需要二分,每次验证看当前的mid是否有大于等于K个数小于mid。验证我们用dp来验证,复杂度是O(NMS*lgN);

需要优化掉一个。这里用背包把M优化掉了,我们找到每个点的Next,Next代表包含这个点的最右端。就不难得到dp方程,这个时候M已经没用了。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=1510;
struct in{ int L,R;}s[maxn];
int a[maxn],b[maxn],N,S,M,K,sum[maxn];
int dp[maxn][maxn],Next[maxn];
bool check(int Mid) //M个选最多S个的第K大
{
    rep(i,1,N) sum[i]=sum[i-1]+(a[i]<=Mid);
    rep(i,0,S) rep(j,0,N) dp[i][j]=0;
    rep(i,1,S){
        rep(j,1,N) dp[i][j]=max(dp[i][j],dp[i-1][j]); //不选j位置。
        rep(j,1,N) if(Next[j]) dp[i][Next[j]]=max(dp[i][Next[j]],dp[i-1][j-1]+sum[Next[j]]-sum[j-1]); //选j
        rep(j,1,N) dp[i][j]=max(dp[i][j],dp[i][j-1]);
    }
    return dp[S][N]>=K;
}
int main()
{
    scanf("%d%d%d%d",&N,&M,&S,&K);
    rep(i,1,N) scanf("%d",&a[i]),b[i]=a[i];
    rep(i,1,M) scanf("%d%d",&s[i].L,&s[i].R);
    rep(i,1,M) rep(j,s[i].L,s[i].R) Next[j]=max(Next[j],s[i].R);
    sort(b+1,b+N+1); int L=1,R=N,Mid,ans=-1;
    while(L<=R){
        Mid=(L+R)>>1;
        if(check(b[Mid])) ans=b[Mid],R=Mid-1;
        else L=Mid+1;
    }
    printf("%d\n",ans);
    return 0;
}

 

posted @ 2018-11-30 19:23  nimphy  阅读(533)  评论(0编辑  收藏  举报