3527: [Zjoi2014]力

给出n个数qi,给出Fj的定义如下: 
 
令Ei=Fi/qi,求Ei

 

化简一下,

FJ=Σ((qj)/(i-j)2)-Σ((qj)/(i-j)2)

另ti=1/i2 ,那么ti-j=1/(i-j)2。。。

那么Σ((qj)/(i-j)2)就变成了一个卷积,后面的把数组翻转一下就好了。。。

 1 #include<iostream>
 2 #include<cstdlib>
 3 #include<cmath>
 4 #include<cstring>
 5 #include<cstdio>
 6 #include<algorithm>
 7 #include<string>
 8 #include<map>
 9 #include<queue>
10 #include<vector>
11 #include<set>
12 #define inf 1000000000
13 #define maxn 500000+5
14 #define maxm 10000+5
15 #define eps 1e-10
16 #define ll long long
17 #define for0(i,n) for(int i=0;i<=(n);i++)
18 #define for1(i,n) for(int i=1;i<=(n);i++)
19 #define for2(i,x,y) for(int i=(x);i<=(y);i++)
20 #define for3(i,x,y) for(int i=(x);i>=(y);i--)
21 #define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go)
22 using namespace std;
23 int read(){
24     int x=0,f=1;char ch=getchar();
25     while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
26     while(ch>='0'&&ch<='9'){x=10*x+ch-'0';ch=getchar();}
27     return x*f;
28 }
29 struct cp{
30     double x,y;
31     cp operator +(cp b){return (cp){x+b.x,y+b.y};}
32     cp operator -(cp b){return (cp){x-b.x,y-b.y};}
33     cp operator *(cp b){return (cp){x*b.x-y*b.y,x*b.y+y*b.x};}
34 };
35 double d[maxn],ans[maxn];
36 const double PI=acos(-1.0);
37 cp a[maxn],b[maxn],c[maxn],y[maxn];
38 int n,nn,m,len,rev[maxn];
39 void fft(cp *x,int n,int flag){
40     for0(i,n-1)y[rev[i]]=x[i];
41     for0(i,n-1)x[i]=y[i];
42     for(int m=2;m<=n;m<<=1){
43         cp wn=(cp){cos(2.0*PI/m*flag),sin(2.0*PI/m*flag)};
44         for(int i=0;i<n;i+=m){
45             cp w=(cp){1.0,0};int mid=m>>1;
46             for0(j,mid-1){
47                 cp u=x[i+j],v=x[i+j+mid]*w;
48                 x[i+j]=u+v;x[i+j+mid]=u-v;
49                 w=w*wn;
50             }
51         }
52     }
53     if(flag==-1)for0(i,n-1)x[i].x/=n;
54 }
55 int main(){
56     //freopen("input.txt","r",stdin);
57     //freopen("output.txt","w",stdout);
58      nn=n=read();
59     n=2*n-1;m=1;
60     while(m<=n)m<<=1,len++;n=m;
61     for0(i,nn-1)scanf("%lf",&d[i]);
62     for0(i,n-1)a[i]=(cp){d[i],0};
63     for0(i,nn-1)b[i]=i?(cp){1.0/((double)i*(double)i),0}:(cp){0,0};
64     for2(i,nn,n-1)b[i]=(cp){0,0};
65     for0(i,n-1){
66         int x=i,y=0;
67         for1(j,len)y<<=1,y|=x&1,x>>=1;
68         rev[i]=y;
69     }
70     fft(a,n,1);fft(b,n,1);
71     for0(i,n-1)c[i]=a[i]*b[i];
72     fft(c,n,-1);
73     for0(i,nn-1)ans[i]=c[i].x;
74     for0(i,nn-1)a[i]=(cp){d[nn-1-i],0};
75     for2(i,nn,n-1)a[i]=(cp){0,0};
76     for0(i,nn-1)b[i]=i?(cp){1.0/((double)i*(double)i),0}:(cp){0,0};
77     for2(i,nn,n-1)b[i]=(cp){0,0};
78     fft(a,n,1);fft(b,n,1);
79     for0(i,n-1)c[i]=a[i]*b[i];
80     fft(c,n,-1);
81     for0(i,nn-1)ans[i]-=c[nn-1-i].x;
82     for0(i,nn-1)printf("%.5f\n",ans[i]);
83     return 0;
84 
85 }
View Code

 

posted @ 2016-06-15 20:43  HTWX  阅读(87)  评论(0编辑  收藏  举报