1646: [Usaco2007 Open]Catch That Cow 抓住那只牛

Description

Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 <= N <= 100,000) on a number line and the cow is at a point K (0 <= K <= 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting. * Walking: FJ can move from any point X to the points X-1 or X+1 in a single minute * Teleporting: FJ can move from any point X to the point 2*X in a single minute. If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?

    农夫约翰被通知,他的一只奶牛逃逸了!所以他决定,马上幽发,尽快把那只奶牛抓回来.
    他们都站在数轴上.约翰在N(O≤N≤100000)处,奶牛在K(O≤K≤100000)处.约翰有
两种办法移动,步行和瞬移:步行每秒种可以让约翰从z处走到x+l或x-l处;而瞬移则可让他在1秒内从x处消失,在2x处出现.然而那只逃逸的奶牛,悲剧地没有发现自己的处境多么糟糕,正站在那儿一动不动.
    那么,约翰需要多少时间抓住那只牛呢?

Input

* Line 1: Two space-separated integers: N and K

    仅有两个整数N和K.

 

Output

* Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.

    最短的时间.

Sample Input

5 17
Farmer John starts at point 5 and the fugitive cow is at point 17.

Sample Output

4
 
这道题和以前做的一道题很像,但是不明白那道题为什么是DP,但是似乎有人用SPFA做出来了,%用SPFA做的大神。。。
不过这道题是用SPFA,其实比较重要的就是判断2*i的边界,容易想到,如果2*i>(假设n<k;n1是n关于k对称的点)n1,那么在n1之后的点如果通过2*i
走到,那么耗费的时间一定大于直接从n走到k,所以只需要从0到n1相邻的点建立双向边,1到n1建立i*2的单向边,然后求SPFA即可。。。
 
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cmath>
 4 #include<algorithm>
 5 #include<cstring>
 6 #define maxn 201000
 7 #define maxm 400000
 8 #define ll long long
 9 #define inf 1000000000
10 using namespace std;
11 struct edge{int go,next,w;}e[2*maxm];
12 int n,m,k,s,t,tot,q[maxn],d[maxn],head[maxn];
13 bool v[maxn];
14 void ins(int x,int y)
15 {
16     e[++tot].go=y;e[tot].w=1;e[tot].next=head[x];head[x]=tot;
17 }
18 void insert(int x,int y)
19 {
20     ins(x,y);ins(y,x);
21 }
22 void spfa()
23 {
24     for(int i=1;i<=m;++i) d[i]=inf;
25     memset(v,0,sizeof(v));
26     int l=0,r=1,x,y;q[1]=n;d[n]=0;
27     while(l!=r)
28     {
29         x=q[++l];if(l==maxn)l=0;v[x]=0;
30         for(int i=head[x];i;i=e[i].next)
31          if(d[x]+e[i].w<d[y=e[i].go])
32          {
33              d[y]=d[x]+e[i].w;
34              if(!v[y]){v[y]=1;q[++r]=y;if(r==maxn)r=0;}
35          }
36     }
37 }
38 int main(){
39     scanf("%d%d",&n,&k);
40     if(k<=n){printf("%d",abs(k-n));return 0;}
41     m=k+abs(k-n)+1;
42     for(int i=0;i<m;i++)insert(i,i+1);
43     for(int i=1;i<=m/2;i++)ins(i,i*2);
44     spfa();
45     printf("%d",d[k]);
46     return 0;
47 }
View Code

 

posted @ 2015-10-03 09:23  HTWX  阅读(170)  评论(0编辑  收藏  举报