CNN 理论
我是半路出生的,看的理论方面的博客做个介绍:https://www.cnblogs.com/pinard/p/6483207.html
https://blog.csdn.net/cxmscb/article/details/71023576
看理论的话第一个博客就够了,第一个博主关于这方面的博客文章我前前后后看了大概十几遍吧,写的很好,能把我这样的渣渣带入门,我想大家也是可以的
实践的话,建议大家去看极客http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html
这个是MNIST机器学习入门的代码
"导入数据集" import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot = True) import tensorflow as tf # "占位符" x = tf.placeholder(tf.float32,[None, 784]) # 权重和偏置量 W = tf.Variable(tf.zeros([784, 10 ])) b = tf.Variable(tf.zeros([10])) # softmax 模型 y = tf.nn.softmax(tf.matmul(x, W) + b) # 交叉熵 y_ = tf.placeholder("float",[None, 10]) cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) # 梯度下降算法以0.01的学习速率最小化交叉熵 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) #初始化变量 init = tf.global_variables_initializer() # 启动模型 sess = tf.Session() sess.run(init) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) correct_prediction = tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) print(sess.run(accuracy,feed_dict={x: mnist.test.images,y_: mnist.test.labels })) # 0.9042
深入MNIST
# -*- coding:utf-8-*- import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data", one_hot = True) import tensorflow as tf sess = tf.InteractiveSession() x = tf.placeholder("float", shape=[None, 784]) y_ = tf.placeholder("float", shape=[None, 10]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) sess.run(tf.global_variables_initializer()) y = tf.nn.softmax(tf.matmul(x, W) + b) cross_entropy = - tf.reduce_sum(y_ * tf.log(y)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) for i in range(10000): batch = mnist.train.next_batch(90) train_step.run(feed_dict= {x: batch[0],y_:batch[1]}) correct_predict = tf.equal(tf.argmax(y,1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_predict,"float")) print(accuracy.eval(feed_dict={x: mnist.test.images,y_:mnist.test.labels})) #0.9084 50 1000 #0.9072 60 1000 #0.908 70 1000 #0.9135 80 1000 #0.9151 84 1000 #0.9175 85 1000 #0.9142 86 1000 #0.9133 90 1000 #0.9026 100 1000 #0.098 850 10000 #0.9245 85 10000 #0.924 90 10000
基于mnist的CNN
# -*- coding:utf-8-*- import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data", one_hot = True) import tensorflow as tf sess = tf.InteractiveSession() x = tf.placeholder("float", shape=[None, 784]) y_ = tf.placeholder("float", shape=[None, 10]) # 权重和偏置量初始化函数 def weight_variable(shape): initial = tf.truncated_normal(shape,stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1,shape=shape) return tf.Variable(initial) # 卷积和池化 def conv2d(x,W): return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding="SAME") def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME") # 第一层卷积 W_conv1 = weight_variable([5,5,1,32]) b_conv1 = bias_variable([32]) x_image =tf.reshape(x, [-1, 28, 28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) # 第二层卷积 W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # 密集连接层 W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1) # dropout keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # 输出层 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) sess.run(tf.global_variables_initializer()) for i in range(2000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={x: batch[0],y_:batch[1],keep_prob:1.0}) print("step %d,training accuracy %g "%(i, train_accuracy)) train_step.run(feed_dict={x: batch[0],y_:batch[1],keep_prob: 0.5}) print("test accuracy %g" % accuracy.eval(feed_dict={x:mnist.test.images,y_:mnist.test.labels,keep_prob:1.0}))
以上代码都是可以运行的,但是还是建议大家自己去写一次,理解各种函数的意义,将理论和事件结合起来