数据结构07——线段树

 

一.线段树的定义

首先,线段树它是一棵二叉树,但它又不是一个完全二叉树,却是一个平衡二叉树。它和二叉树一样,有一个一个的节点,但是对于线段树而言,它的每一个节点表示的都是一个区间类相应的信息。以求和为例,线段树每个节点,存储的就是一段区间的数字和。根节点存储的就是整个区间的相应的数字和,之后从根节点将这个区间平均分成两段,例如A[0...7],那么它的左孩子就是A[0...3],右孩子就是A[4...7]。对于满二叉树而言,如果有h层,那么其节点数为2^h-1个节点,最后一层(h-1),有2^(h-1)个节点。线段树其实主要用于解决连续区间的动态高效查询的问题,由于二叉结构的这样一个特性,使用线段树可以快速的查找某一个节点在若干条线段中出现的次数,而且时间复杂度为O(logN)。

 

二.线段树具体的实现

 

线段树

 

1.线段树的基础表示

package com.zfy.segmenttree;

public class SegmentTree<E> {

    private E[] tree;//声明一个树数组
    private E[] data;//声明一个数组
    
    public SegmentTree(E[] arr) {
        data = (E[])new Object[arr.length];
        for (int i = 0; i < arr.length; i++) {
            data[i] = arr[i];
        }
        tree = (E[])new Object[4 * arr.length];
    }
    
    //获取个数
    public int getSize(){
        return data.length;
    }

    //按照index获取元素
    public E get(int index){
        if(index < 0 || index >= data.length)
            throw new IllegalArgumentException("Index is illegal.");
        return data[index];
    }
    
    //返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
    private int leftChild(int index){
        return 2*index + 1;//是以数组以0为开始的计算
    }

    //返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
    private int rightChild(int index){
        return 2*index + 2;
    }

    
}

 

2.线段树的创建

package com.zfy.segmenttree;

/*
 * 计算treeIndex的接口
 * */
public interface Merger<E> {
    
    E merge(E a, E b);

}
 

        private Merger<E> merger;
    
    public SegmentTree(E[] arr, Merger<E> merger) {
        
        this.merger = merger;
        
        data = (E[])new Object[arr.length];
        for (int i = 0; i < arr.length; i++) {
            data[i] = arr[i];
        }
        tree = (E[])new Object[4 * arr.length];
        buildSegmentTree(0, 0, data.length - 1);
    }

    //在treeIndex的位置创建表示区间[l...r]的线段树
    private void buildSegmentTree(int treeIndex, int l, int r) {
        
        //l==r,就是这个里面只有一个节点
        if (l == r) {
            tree[treeIndex] = data[r];
            return;
        }
        
        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);

        int mid = l + (r - l) / 2;//区间边界:左边界加上左右边界它们的距离除以2,得到的位置就是中间的位置
        buildSegmentTree(leftTreeIndex, l, mid);
        buildSegmentTree(rightTreeIndex, mid + 1, r);

        tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);//计算treeIndex
        
    }

 

3.线段树的查询

//线段树查询方法,返回区间[queryL, queryR]的值
    public E query(int queryL, int queryR) {

        if (queryL < 0 || queryL >= data.length || queryR < 0 || queryR >= data.length || queryL > queryR)
            throw new IllegalArgumentException("Index is illegal.");

        return query(0, 0, data.length - 1, queryL, queryR);
    }

    //在以treeIndex为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值
    private E query(int treeIndex, int l, int r, int queryL, int queryR) {

        if (l == queryL && r == queryR)
            return tree[treeIndex];

        int mid = l + (r - l) / 2;

        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);

        //如果queryL > mid,则查询其右孩子。反之则为左孩子
        if (queryL > mid + 1) {
            return query(rightTreeIndex, mid + 1, r, queryL, queryR);
        } else if (queryR <= mid) {
            return query(leftTreeIndex, l, mid, queryL, queryR);
        }

        E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
        E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
        return merger.merge(leftResult, rightResult);

    }

 

4.线段树的更新操作

//将index位置的值,更新为e
    public void set(int index, E e) {

        if (index < 0 || index >= data.length)
            throw new IllegalArgumentException("Index is illegal");
        data[index] = e;
        set(0, 0, data.length - 1, index, e);

    }

    //在以treeIndex为根的线段树中更新index的值为e
    private void set(int treeIndex, int l, int r, int index, E e) {

        if (l == r) {
            tree[treeIndex] = e;
            return;
        }
        int mid = l + (r - l) / 2;
        //treeIndex的节点分为[l...mid]和[mid+1...r]两部分

        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);
        if(index >= mid + 1)
            set(rightTreeIndex, mid + 1, r, index, e);
        else // index <= mid
            set(leftTreeIndex, l, mid, index, e);

        tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
    }
 

 

5.完整代码

package com.zfy.segmenttree;

import com.zfy.segmenttree.Merger;

public class SegmentTree<E> {

    private E[] tree;//声明一个树数组
    private E[] data;//声明一个数组
    private Merger<E> merger;
    
    public SegmentTree(E[] arr, Merger<E> merger) {
        
        this.merger = merger;
        
        data = (E[])new Object[arr.length];
        for (int i = 0; i < arr.length; i++) {
            data[i] = arr[i];
        }
        tree = (E[])new Object[4 * arr.length];
        buildSegmentTree(0, 0, data.length - 1);
    }

    //在treeIndex的位置创建表示区间[l...r]的线段树
    private void buildSegmentTree(int treeIndex, int l, int r) {
        
        //l==r,就是这个里面只有一个节点
        if (l == r) {
            tree[treeIndex] = data[r];
            return;
        }
        
        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);

        int mid = l + (r - l) / 2;//区间边界:左边界加上左右边界它们的距离除以2,得到的位置就是中间的位置
        buildSegmentTree(leftTreeIndex, l, mid);
        buildSegmentTree(rightTreeIndex, mid + 1, r);

        tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);//计算treeIndex
        
    }

    //获取个数
    public int getSize(){
        return data.length;
    }

    //按照index获取元素
    public E get(int index){
        if(index < 0 || index >= data.length)
            throw new IllegalArgumentException("Index is illegal.");
        return data[index];
    }
    
    //返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
    private int leftChild(int index){
        return 2*index + 1;//是以数组以0为开始的计算
    }

    //返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
    private int rightChild(int index){
        return 2*index + 2;
    }

    //线段树查询方法,返回区间[queryL, queryR]的值
    public E query(int queryL, int queryR) {

        if (queryL < 0 || queryL >= data.length || queryR < 0 || queryR >= data.length || queryL > queryR)
            throw new IllegalArgumentException("Index is illegal.");

        return query(0, 0, data.length - 1, queryL, queryR);
    }

    //在以treeIndex为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值
    private E query(int treeIndex, int l, int r, int queryL, int queryR) {

        if (l == queryL && r == queryR)
            return tree[treeIndex];

        int mid = l + (r - l) / 2;

        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);

        //如果queryL > mid,则查询其右孩子。反之则为左孩子
        if (queryL > mid + 1) {
            return query(rightTreeIndex, mid + 1, r, queryL, queryR);
        } else if (queryR <= mid) {
            return query(leftTreeIndex, l, mid, queryL, queryR);
        }

        E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
        E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
        return merger.merge(leftResult, rightResult);

    }
    
    //将index位置的值,更新为e
    public void set(int index, E e) {

        if (index < 0 || index >= data.length)
            throw new IllegalArgumentException("Index is illegal");
        data[index] = e;
        set(0, 0, data.length - 1, index, e);

    }

    //在以treeIndex为根的线段树中更新index的值为e
    private void set(int treeIndex, int l, int r, int index, E e) {

        if (l == r) {
            tree[treeIndex] = e;
            return;
        }
        int mid = l + (r - l) / 2;
        //treeIndex的节点分为[l...mid]和[mid+1...r]两部分

        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);
        if(index >= mid + 1)
            set(rightTreeIndex, mid + 1, r, index, e);
        else // index <= mid
            set(leftTreeIndex, l, mid, index, e);

        tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
    }

    @Override
    public String toString() {
        StringBuilder res = new StringBuilder();
        res.append('[');
        for (int i = 0; i < tree.length; i++) {
            if (tree[i] != null)
                res.append(tree[i]);
            else
                res.append("null");

            if (i != tree.length - 1)
                res.append(", ");
        }
        res.append(']');
        return res.toString();
    }

    
}

 

 

结束语:工欲善其事,必先利其器。而基础就是我们的利器,合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下。对于知识的学习,我还是认为要学好基础。

参考:bobobo老师的玩转数据结构

版权声明:尊重博主原创文章,转载请注明出处 https://www.cnblogs.com/hsdy

posted @ 2018-08-19 09:16  寒山道杳  阅读(198)  评论(0编辑  收藏  举报