Sequence I
Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1013 Accepted Submission(s): 393
Problem Description
Mr. Frog has two sequences a1,a2,⋯,an
and b1,b2,⋯,bm
and a number p. He wants to know the number of positions q such that sequence b1,b2,⋯,bm
is exactly the sequence aq,aq+p,aq+2p,⋯,aq+(m−1)p
where q+(m−1)p≤n
and q≥1
.
Input
The first line contains only one integer T≤100
, which indicates the number of test cases.
Each test case contains three lines.
The first line contains three space-separated integers 1≤n≤106,1≤m≤106 and 1≤p≤106 .
The second line contains n integers a1,a2,⋯,an(1≤ai≤109) .
the third line contains m integers b1,b2,⋯,bm(1≤bi≤109) .
Each test case contains three lines.
The first line contains three space-separated integers 1≤n≤106,1≤m≤106 and 1≤p≤106 .
The second line contains n integers a1,a2,⋯,an(1≤ai≤109) .
the third line contains m integers b1,b2,⋯,bm(1≤bi≤109) .
Output
For each test case, output one line “Case #x: y”, where x is the case number (starting from 1) and y is the number of valid q’s.
Sample Input
2
6 3 1
1 2 3 1 2 3
1 2 3
6 3 2
1 3 2 2 3 1
1 2 3
Sample Output
Case #1: 2
Case #2: 1
Source
题意:
题解:
kmp
1 /****************************** 2 code by drizzle 3 blog: www.cnblogs.com/hsd-/ 4 ^ ^ ^ ^ 5 O O 6 ******************************/ 7 #include<bits/stdc++.h> 8 #include<map> 9 #include<set> 10 #include<cmath> 11 #include<queue> 12 #include<bitset> 13 #include<math.h> 14 #include<vector> 15 #include<string> 16 #include<stdio.h> 17 #include<cstring> 18 #include<iostream> 19 #include<algorithm> 20 #pragma comment(linker, "/STACK:102400000,102400000") 21 using namespace std; 22 #define A first 23 #define B second 24 const int mod=1000000007; 25 const int MOD1=1000000007; 26 const int MOD2=1000000009; 27 const double EPS=0.00000001; 28 //typedef long long ll; 29 typedef __int64 ll; 30 const ll MOD=1000000007; 31 const int INF=1000000010; 32 const ll MAX=1ll<<55; 33 const double eps=1e-5; 34 const double inf=~0u>>1; 35 const double pi=acos(-1.0); 36 typedef double db; 37 typedef unsigned int uint; 38 typedef unsigned long long ull; 39 int f[2000100]; 40 void get(int *p,int m) 41 { 42 int j=0; 43 f[0]=f[1]=0; 44 for(int i=1;i<m;i++) 45 { 46 j=f[i]; 47 while(j&&p[j]!=p[i]) j=f[j]; 48 if(p[i]==p[j]) f[i+1]=j+1; 49 else f[i+1]=0; 50 } 51 } 52 int kmp(int *s,int *p,int n,int m) 53 { 54 int num=0; 55 int j=0; 56 for(int i=0;i<n;i++) 57 { 58 while(j&&p[j]!=s[i]) j=f[j]; 59 if(s[i]==p[j]) j++; 60 if(j==m) num++; 61 } 62 return num; 63 } 64 int s[2000100],p[2000100],t[2000100]; 65 int n,m,q; 66 int main() 67 { 68 int T; 69 scanf("%d",&T); 70 for(int k=1;k<=T;k++) 71 { 72 scanf("%d %d %d",&n,&m,&q); 73 memset(t,0,sizeof(t)); 74 memset(p,0,sizeof(p)); 75 for(int i=0;i<n;i++) 76 scanf("%d",&t[i]); 77 for(int i=0;i<m;i++) 78 scanf("%d",&p[i]); 79 get(p,m); 80 int ans=0; 81 for(int i=0;i<q;i++) 82 { 83 int num=0; 84 for(int j=i;j<n&&i+(m-1)*q<n;j+=q) 85 s[num++]=t[j]; 86 ans+=kmp(s,p,num,m); 87 } 88 printf("Case #%d: %d\n",k,ans); 89 } 90 return 0; 91 } 92 /* 93 KMP 处理 94 *
模拟
1 /****************************** 2 code by drizzle 3 blog: www.cnblogs.com/hsd-/ 4 ^ ^ ^ ^ 5 O O 6 ******************************/ 7 #include<bits/stdc++.h> 8 #include<map> 9 #include<set> 10 #include<cmath> 11 #include<queue> 12 #include<bitset> 13 #include<math.h> 14 #include<vector> 15 #include<string> 16 #include<stdio.h> 17 #include<cstring> 18 #include<iostream> 19 #include<algorithm> 20 #pragma comment(linker, "/STACK:102400000,102400000") 21 using namespace std; 22 #define A first 23 #define B second 24 const int mod=1000000007; 25 const int MOD1=1000000007; 26 const int MOD2=1000000009; 27 const double EPS=0.00000001; 28 //typedef long long ll; 29 typedef __int64 ll; 30 const ll MOD=1000000007; 31 const int INF=1000000010; 32 const ll MAX=1ll<<55; 33 const double eps=1e-5; 34 const double inf=~0u>>1; 35 const double pi=acos(-1.0); 36 typedef double db; 37 typedef unsigned int uint; 38 typedef unsigned long long ull; 39 int t; 40 int a[1000006]; 41 int b[1000006]; 42 int d[1000006]; 43 map<int,int> mp; 44 vector<int > ve[1000006]; 45 int n,m,p; 46 int main() 47 { 48 while(scanf("%d",&t)!=EOF) 49 { 50 for(int l=1; l<=t; l++) 51 { 52 mp.clear(); 53 scanf("%d %d %d",&n,&m,&p); 54 for(int i=1; i<=n; i++) 55 scanf("%d",&a[i]); 56 int jishu=1; 57 for(int i=1; i<=m; i++ ) 58 { 59 ve[i].clear(); 60 scanf("%d",&b[i]); 61 if(mp[b[i]]==0) 62 { 63 mp[b[i]]=jishu; 64 d[jishu]=i; 65 jishu++; 66 } 67 } 68 int minx=10000000; 69 int what=0; 70 for(int i=1; i<=n; i++) 71 { 72 if(mp[a[i]]) 73 { 74 ve[mp[a[i]]].push_back(i); 75 } 76 } 77 for(int i=1; i<jishu; i++) 78 { 79 if(minx>ve[i].size()) 80 { 81 minx=ve[i].size(); 82 what=i; 83 } 84 } 85 int sum=0; 86 for(int i=0; i<ve[what].size(); i++) 87 { 88 int st=ve[what][i]-(d[mp[a[ve[what][i]]]]-1)*p; 89 int ed=ve[what][i]+(m-d[mp[a[ve[what][i]]]])*p; 90 int zha=1; 91 int flag=0; 92 if(st<1||ed>n) 93 flag=1; 94 if(flag==0) 95 { 96 for(int j=st; j<=ed; j+=p) 97 { 98 if(a[j]!=b[zha++]) 99 { 100 flag=1; 101 break; 102 } 103 } 104 } 105 if(flag==0) 106 sum++; 107 } 108 printf("Case #%d: %d\n",l,sum); 109 } 110 } 111 return 0; 112 }