二叉搜索树
定义
它或者是一棵空树,或者是具有下列性质的二叉树:
- 若左子树不空。则左子树上全部节点的值均小于它的根节点的值;
- 若右子树不空。则右子树上全部节点的值均大于它的根节点的值;
- 左、右子树也分别为二叉搜索树。
性质
- 因为节点是有序排放的:左子树<根节点<右子树。
故在查找一个节点的时候。仅仅需先和根节点比較,再决定是进入左子树还是右子树查找。而普通二叉树须要一个一个地遍历。
- 查找、插入的时间复杂度是O(h),h是树的高度。即当树的高度尽量低(比較平衡)时,效率高。
算法解释
以下对代码中给出的部分算法进行解释,便于阅读。
- 构造方法:BinarySearchTree();建树的过程就是一个插入的过程。所以插入操作是重要的。
- 求叶子节点数:int leaf();按某种方式遍历树,若左右孩子皆为空。即为叶子节点。代码中是按中序遍历的。
- 查找指定节点:bool search(ElemType);依据二叉搜索树节点的分布特点,查找仅仅需在左或右子树中进行。而且插入树中已有的节点也算插入失败。插入操作逻辑比較清楚,代码易看懂。
- 获取指定节点的前驱:BTNode* predecessor(ElemType);这个操作在普通二叉树中是没有的。在二叉搜索树中,某节点的前驱指的是中序遍历时的前驱。故该操作本质上是一个中序遍历的过程。
略微不同的是,在遍历的过程中须要记录近期一次遍历的节点plastVisit,并推断当前訪问的节点是否是指定节点。若是,则返回plastVisit。
- 获取后继和获取前驱的道理是一样的。
- 获取最小节点:BTNode* minimum();二叉搜索树中的最小节点一定是位于左子树(假设存在)。
于是,不断遍历左子树就可以。比較简单。
- 获取最大节点:BTNode* maximum();二叉搜索树中的最大节点一定是位于右子树(假设存在)。于是,不断遍历右子树就可以,比較简单。
- 插入节点:bool insertNode(ElemType);插入的过程本质上也是查找,须要记住的是:新节点会插入到叶子节点处。
- 遍历:void traverse();二叉搜索树的遍历能够是多样的,各种遍历方式也在上一篇二叉树中实现了,这里仅仅给出中序遍历。由于,对一棵二叉搜索树进行中序遍历会得到节点从小到大的排序序列。
- 删除节点:bool deleteNode(ElemType);删除的规则是这种:
- 若待删节点无左子树,则用其右子树的根节点替换它。
- 若待删节点有左子树,则在左子树中寻找中序遍历的最后一个节点,用该节点替换它。
这也是全部操作中最复杂的。绘图理解:
详细细节还得看代码,代码较长,建议以方法为单位来理解。
代码
类定义
#include<iostream> #include<iomanip> #include<stack> #include<queue> using namespace std; typedef int ElemType; //二叉树节点 class BTNode //Binary Tree Node { public: ElemType data; BTNode* lchild; //左孩子 BTNode* rchild; //右孩子 BTNode(ElemType d, BTNode* left = NULL, BTNode* right = NULL) :data(d), lchild(left), rchild(right){} }; //二叉搜索树 class BinarySearchTree { private: //树根 BTNode* Root; //节点总数 int size; public: //构造方法 BinarySearchTree(); //析构方法 ~BinarySearchTree(); //推断树空 bool empty() {return Root == NULL;} //求节点总数 int getSize() {return size;} //求叶子节点数 int leaf(); //查找 bool search(ElemType); //获取父节点 BTNode* parent(ElemType); //获取前驱 BTNode* predecessor(ElemType); //获取后继 BTNode* successor(ElemType); //获取最小节点 BTNode* minimum(); //获取最大节点 BTNode* maximum(); //插入新节点 bool insertNode(ElemType); //删除节点 bool deleteNode(ElemType); //中序遍历 void traverse() {inOrderWithoutRecursion();} void inOrderWithoutRecursion(); };
类实现
//构造方法 BinarySearchTree::BinarySearchTree() { size = 0; Root = NULL; ElemType data; cout << "建树,输入节点,输入0结束:"; while (cin >> data && data) insertNode(data); } //析构方法 BinarySearchTree::~BinarySearchTree() { if (!empty()) { queue<BTNode*> q; q.push(Root); BTNode* p = NULL; while (!q.empty()) { p = q.front(); q.pop(); //左孩子不为空。则左孩子入队 if (p->lchild) q.push(p->lchild); //右孩子不为空。则右孩子入队 if (p->rchild) q.push(p->rchild); //释放内存 delete p; } } } //求叶子节点数 int BinarySearchTree::leaf() { int num = 0; //按中序遍历 if (!empty()) { stack<BTNode*> s; BTNode* p = Root; while (!s.empty() || p) { if (p) { s.push(p); p = p->lchild; } else { p = s.top(); s.pop(); //左右子树均为空,则为叶子节点 if (p->lchild == NULL && p->rchild == NULL) num++; p = p->rchild; } } } return num; } //查找 bool BinarySearchTree::search(ElemType data) { if (!empty()) { BTNode* p = Root; while (p) { if (data == p->data) return true; else if (data < p->data) p = p->lchild; else p = p->rchild; } } //树空或查找失败 return false; } BTNode* BinarySearchTree::parent(ElemType data) { if (!empty()) { //根节点的父节点为空 if (Root->data == data) return NULL; stack<BTNode*> s; BTNode* p = Root; while (!s.empty() || p) { if (p) { s.push(p); p = p->lchild; } else {//左子树訪问完后,訪问右子树 p = s.top(); s.pop(); if ((p->lchild && p->lchild->data == data) || (p->rchild && p->rchild->data == data)) return p; p = p->rchild; } } } return NULL; } //获取前驱 BTNode* BinarySearchTree::predecessor(ElemType data) { BTNode* pcur, *plastVisit; pcur = plastVisit = NULL; if (!empty()) { stack<BTNode*> s; pcur = Root; while (!s.empty() || pcur) { if (pcur) { //plastVisit = pcur; s.push(pcur); pcur = pcur->lchild; } else { pcur = s.top(); s.pop(); if (pcur->data == data) return plastVisit; else plastVisit = pcur; pcur = pcur->rchild; } } } return plastVisit; } //获取后继 BTNode* BinarySearchTree::successor(ElemType data) { BTNode* pcur = NULL; pcur = Root; if (!empty()) { stack<BTNode*> s; while (!s.empty() || pcur) { if (pcur) { s.push(pcur); pcur = pcur->lchild; } else { pcur = s.top(); s.pop(); if (pcur->data == data) return pcur->rchild; pcur = pcur->rchild; } } } //空树 return NULL; } //获取最小节点 BTNode* BinarySearchTree::minimum() { //最小节点在左子树最下边 if (!empty()) { BTNode* p = Root; while (p->lchild) p = p->lchild; return p; } //树空 return NULL; } //获取最大节点 BTNode* BinarySearchTree::maximum() { //最大节点在右子树最下边 if (!empty()) { BTNode* p = Root; while (p->rchild) p = p->rchild; return p; } //树空 return NULL; } //插入新节点 bool BinarySearchTree::insertNode(ElemType data) { /* 新节点都会被插入到叶子处 插入一般不会失败,除非是插入了反复节点。 */ if (Root == NULL) { Root = new BTNode(data); size++; return true; } else { BTNode* p = Root; while (true) { if (data < p->data) { //假设有左子树。则继续遍历左子树 if (p->lchild) p = p->lchild; else {//否则,插入节点,下同 p->lchild = new BTNode(data); break; } } else if (data > p->data) { if (p->rchild) p = p->rchild; else { p->rchild = new BTNode(data); break; } } else//遇到反复节点 return false; } //插入新节点成功,节点总数加一 size++; return true; } } //删除节点 bool BinarySearchTree::deleteNode(ElemType data) { /* 删除规则 1.若待删节点无左子树,则用其右子树的根节点替换它。2.若待删节点有左子树,则在左子树中寻找中序遍历的最后一个节点,用该节点替换它。
*/ if (!empty()) { //树中无此节点。删除失败 if (!search(data)) return false; /* p:待删结点 Parent:待删除节点的父节点 temp:替换节点 tempp:替换节点的父节点 */ BTNode* p, *Parent, *temp, *tempp; p = Parent = temp = tempp = NULL; //获取待删除节点的父节点 Parent = parent(data); //依据父节点。确定待删结点 if (Parent->lchild && Parent->lchild->data == data) p = Parent->lchild; else p = Parent->rchild; //假设左子树不为空,查找当中序遍历的最后一个节点 if (p->lchild) { temp = p->lchild; while (temp->rchild) { tempp = temp; //不断遍历右子树 temp = temp->rchild; } //假设p的左孩子即是替换节点 if (tempp == NULL) p->lchild = temp->lchild; else//替换节点的左子树作为其父节点的右子树(这句难以理解,须要多想想) tempp->rchild = temp->lchild; //替换节点继承待删结点的左右孩子 temp->lchild = p->lchild; temp->rchild = p->rchild; } else temp = p->rchild; //替换节点替换掉待删结点(这也是为什么须要找到待删结点的父节点) if (Parent == NULL) //待删结点恰为根节点 Root = temp; else if (Parent->lchild == p) //待删结点本身处于左子树 Parent->lchild = temp; else//待删结点本身处于右子树 Parent->rchild = temp; //删除待删结点 delete p; //节点总数减一 size--; return true; } //树空 return false; } //中序遍历 void BinarySearchTree::inOrderWithoutRecursion() { if (!empty()) { stack<BTNode*> s; BTNode* p = Root; while (!s.empty() || p) { if (p) { s.push(p); p = p->lchild; } else { p = s.top(); s.pop(); cout << setw(4) << p->data; p = p->rchild; } } cout << endl; } }
主函数
int main() { cout << "******二叉搜索树***by David***" << endl; BinarySearchTree tree; cout << "中序遍历" << endl; tree.traverse(); cout << "树中节点总数 " << tree.getSize() << endl; cout << "叶子节点数 " << tree.leaf() << endl; BTNode* p = NULL; p = tree.minimum(); p ? cout << "最小节点是 " << p->data << endl : cout << "树空。" << endl; p = tree.maximum(); p ? cout << "最大节点是 " << p->data << endl : cout << "树空。" << endl; ElemType data = 2; cout << endl << "查找节点 " << data << endl; if (tree.search(data)) { cout << "节点 " << data << " 查找成功!" << endl; p = tree.predecessor(data); p ?
cout << "节点 " << data << " 的前驱是 " << p->data << endl : cout << "无前驱!" << endl; p = tree.successor(data); p ? cout << "节点 " << data << " 的后继是 " << p->data << endl : cout << "无后继!" << endl; } else cout << "节点 " << data << "不在树中!" << endl; data = 6; cout << endl <<"删除节点 " << data << endl; if (tree.deleteNode(data)) { cout << "删除成功!" << endl; cout << "中序遍历" << endl; tree.traverse(); cout << "树中节点总数 " << tree.getSize() << endl; cout << "叶子节点数 " << tree.leaf() << endl; data = 5; cout << endl << "查找节点 " << data << endl; if (tree.search(data)) { cout << "节点 " << data << " 查找成功!
" << endl; p = tree.predecessor(data); p ? cout << "节点 " << data << " 的前驱是 " << p->data << endl : cout << "无前驱!" << endl; p = tree.successor(data); p ? cout << "节点 " << data << " 的后继是 " << p->data << endl : cout << "无后继!" << endl; } else cout << "节点 " << data << "不在树中!" << endl; } else cout << "删除失败!" << endl; cout << endl; system("pause"); return 0; }
执行
算法优化
//插入新节点 bool BinarySearchTree::insertNode(ElemType data) { BTNode *parent, *child; parent = NULL; child = Root; while (child) { parent = child; if (data < child->data) child = child->lchild; else if (data > child->data) child = child->rchild; else//插入同样keyword的节点。返回false return false; } //此时parent要么为空,要么就是叶子节点 if (parent == NULL)//空树 Root = new BTNode(data); else if (data < parent->data) parent->lchild = new BTNode(data); else parent->rchild = new BTNode(data); size++; return true; }
专栏文件夹:
版权声明:本文博主原创文章。转载,转载请注明出处。