蓝牙核心技术概述(三): 蓝牙协议规范(无线电频率、基带链路控制、领汇管理)
关键词:蓝牙核心技术协议无线电频率基带链路控制链路管理
作者:xubin341719(欢迎转载。请注明作者,请尊重版权。谢谢!)
欢迎指正错误。共同学习、共同进步!
!
下载链接:Bluetooth PROFILE SPECIFICATIONS (基本涵盖全部蓝牙协议)、buletooth core 2.1-4.0 SPECIFICATION(三蓝牙版本号的核心协议v2.1\v3.0\v4.0)、蓝牙核心技术与应用 马建仓 版(蓝牙协议相关刚開始学习的人必读,开发人员參考)
蓝牙核心技术概述(一):蓝牙概述
蓝牙核心技术概述(二):蓝牙使用场景
蓝牙核心技术概述(三): 蓝牙协议规范(射频、基带链路控制、链路管理)
蓝牙核心技术概述(四):蓝牙协议规范(HCI、L2CAP、SDP、RFOCMM)
蓝牙核心技术概述(五):蓝牙协议规范(irOBEX、BNEP、AVDTP、AVCTP)
蓝牙协议是蓝牙设备间交换信息所应该遵守的规则。
与开放系统互联(OSI)模型一样。蓝牙技术的协议体系也採用了分层结构。从底层到高层形成了蓝牙协议栈。各层协议定义了所完毕的功能和使用数据分组格式,以保证蓝牙产品间的互操作性。
一、射频协议
射频位置如上图红色部分。
1、工作频率
蓝牙工作在2.4GHz ISM频段上,蓝牙採用跳频扩谱技术主动的避免工作频段受干扰(微波炉的工作频率也是2.4GHz)。
地理位置 | ISM频段范围 | 射频信道频率 |
中国、美国、欧洲 | 2400.0~2483.5MHz | F=(2402+k)MHz,k在0、1、……78中随机取值 |
法国 | 2446.5~2483.5MHz | F=(2454+k)MHz,k在0、1、……22中随机取值 |
日本 | 2471.0~2497.0MHz | F=(2473+k)MHz,k在0、1、……22中随机取值 |
西班牙 | 2445.0~2475.0MHz | F=(2449+k)MHz,k在0、1、……22中随机取值 |
我国的蓝牙频率在2.402GHz~2.483GHz,蓝牙每一个频道的宽度为1MHz。为了降低带外辐射的干扰,保留上、下保护为3.5MHz和2MHz,79个跳频点中至少75个伪随机码跳动。30S内不论什么一个频点使用时长不能超过0.4S。
2、跳频技术、发射功率、时隙
(1)、发射功率:蓝牙发射功率分三级:一级功率100mW(20dBm)。二级功率2.5mW(4dBm);三级功率1mW(0dBm);
(2)、物理信道:蓝牙物理信道有伪随机序列控制的79个跳频点构成,不同跳频序列代表不同的信道。
(3)、时隙:蓝牙跳频速率为1600次/s,每一个时间为625uS(1S/1600)称为一个时隙;
二、基带与链路控制协议
蓝牙发送数据时,基带部分将来自高层的数据进行信道编码。向下发给射频进行发送;接收数据时,将解调恢复空中数据并上传给基带。基带进行信道编码传送给上层。
作用:跳频选择、蓝牙编址、链路类型、信道编码、收发规则、信道控制、音频规范、安全设置。
1、蓝牙分组编码为小端模式;
2、蓝牙地址
BD_ADDR:BluetoothDevice Address。
LAP:LowerAddress Part 低地址部分。
UAP: UpperAddress Part 高地址部分;
NAP: Non-significantAddress Part 无效地址部分。
3、蓝牙时钟
每一个蓝牙设备都有一个独立执行的内部系统时钟。称为本地时钟(Local Clock),决定定时器的收发跳频。为了与其它设备同步,本地时钟要加一个偏移量(offset),提供给其它设备同步。
蓝牙基带四个关键周期:312.5uS、625uS、1.25mS、1.28S。
CLKN:本地时钟:
CLKE:估计时钟。扫描寻呼过程中用到;
CLK:设备实际执行的时钟频率。
CLKE、CLK由CLKN加上一个偏移量得到的。
4、蓝牙物理链路:
通信设备间物理层的数据连接通道就是物理链路。
ACL(Asynchronous Connectionless)异步无连接链路;对时间要求不敏感的数据通信。如文件数据、控制信令等。
SCO(Synochronous Connection Oriented)同步面向连接链路;对时间比較敏感的通信。如:语音;最多仅仅支持3条SCO链路。不支持重传。
ACL用于传输数据。
5、蓝牙基带分组:
基带分组至少包括:接入码、分组头、有效载荷。
(1)、接入码用于同步、直流、载频泄漏偏置补偿标识;
(2)、分组头包括链路信息。确保纠正较多的错误。
分组类型例如以下:
分组类别 | Type(b3b2b1b0) | 时隙 | SCO | ACL |
链路控制分组 | 0000 | 1 | NULL | NULL |
0001 | POLL | POLL | ||
0010 | FHS | FHS | ||
0011 | DM1 | DM1 | ||
单时隙分组 | 0100 | 1 | 没有定义 | NULL |
0101 | HV1 | |||
0110 | HV2 | |||
0111 | HV3 | |||
1000 | DV | |||
1001 | NULL | AUX1 | ||
3时隙分组 | 1010 | 3 | 没有定义 | DM3 |
1011 | DH3 | |||
1100 | 没有定义 | |||
1101 | ||||
5时隙分组 | 1110 | 5 | 没有定义 | DM5 |
1111 |
ACL分组形式为:D(M|H)(1|3|5),D代表数据分组。M代表用2/3比例的FEC的中等速率分组;H代表不使用纠错码的快速率分组;1、3、5分别代表分组所占用的时隙数目;
DM1、DM3、DM5、DH1、DH3、DH5
SCO分组形式为:HV(1|2|3)。HV代表高质量语言分组。1、2、3有效载荷所採用的纠错码方法。1为1/3比例FEC。设备2个时隙发送一个单时隙分组。2为2/3比例FEC,设备4个时隙发送一个单时隙分组;3为不使用纠错码,设备6个时隙发送一个单时隙分组
HV1、HV2、HV3
ALC 分组:
类型 | 有效载荷头/字节 | 用户有效载荷/字节 | FEC | CRC | 对称最大速率/kbps | 非对称速率/kbps | |
前向 | 后向 | ||||||
DM1 | 1 | 0~17 | 2/3 | 有 | 108.8 | 108.8 | 108.8 |
DH1 | 1 | 0~27 | 无 | 有 | 172.8 | 172.8 | 172.8 |
DM3 | 2 | 0~121 | 2/3 | 有 | 258.1 | 387.2 | 54.4 |
DH3 | 2 | 0~183 | 无 | 有 | 390.4 | 585.6 | 86.4 |
DM5 | 2 | 0~224 | 2/3 | 有 | 286.7 | 477.8 | 36.3 |
MH5 | 2 | 0~339 | 无 | 有 | 433.9 | 723.2 | 57.6 |
AUX1 | 1 | 0~29 | 无 | 无 | 185.6 | 185.6 | 185.6 |
SCO分组:
类型 | 有效载荷头/字节 | 用户有效载荷/字节 | FEC | CRC | 有效载荷长度 | 同步速率/kbps | 占用Tsco数目/语言长度 |
HV1 | 无 | 10 | 1/3 |
| 240位 | 64 | 2/1.25ms |
HV2 | 20 | 2/3 | 4/2.5ms | ||||
HV3 | 30 | 无 | 6/3.75ms | ||||
DV | 1D | 10+(0-9)D | 2/3D | 有D |
| 64+57.6D |
|
凝视:D 仅仅对数据段实用,DV分组包括数据段,也包括语言段。
(3)、有效载荷
分语言有效载荷、数据有效载荷。
6、蓝牙的逻辑信道
链路控制信道:LinkControl LC
链路管理信道:Link Manage LM
用户异步数据信道:User AsynchronizationUA
用户同步数据信道:UserSynchronization US
用户等时数据信道:UserIsochronous UI UI
7、蓝牙的收发规则
上图为RX缓存。
上图为TX缓存。
新分组到达时,ACL链路的RX缓存器要流量控制,SCO数据不须要流量控制;
8、蓝牙基带信道和网络控制
1)、链路控制器状态:
待机、连接
寻呼page、寻呼扫描pagescan、查询inquiry、查询扫描inquiry scan、主设备对应Master Response、从设备对应Slave Response、查询对应inquiry response
2) 、连接状态
激活模式active、呼吸模式sniff、保持模式hold、休眠模式park。
3)、待机状态
待机状态是蓝牙设备缺省低功耗状态。此状态下本地时钟以低精度执行。
蓝牙从待机转入寻呼扫描状态。对其它寻呼进行响应成为从设备;也能够从待机状态进入查询扫描状态。完毕一个完整的寻呼,成为主设备。
9、接入过程
凝视:
IAC Inquiry AccessCode 查询接入码。
GIAC:通用查询接入码 DIAC:专用查询接入码;
DAC:DeviceAccess Code 设备接入码;
LAP:
建立连接,必须使用查询、寻呼;查询过程使用IAC,发现覆盖区域内的设备、设备的地址及其时钟。连接过程使用DAC。建立连接的设备处理寻呼过程。成为主设备。、(1)、查询过程
蓝牙设备通过查询来发现通信范围内的其它蓝牙设备。查询信息分为GIAC、DIAC两种。查询发起设备收集全部对应设备的地址、时钟信息。
一设备进入查询状态去发现其它设备。查询状态下连续不断的在不同频点发送查询消息。查询的跳频序列有GIAC的LAP导出。
一设备想被其它设备发现,就要周期性进入 查询扫描状态,以便对应查询消息。如:我们选择设备多长时间可见,事实上就是 进入查询扫描状态。
A、查询扫描
查询扫描状态下,接收设备扫描接入码的时间长度,足以完毕对16个频率的扫描。
扫描区间长度Twindow inquiry scan。
扫描在同一个频率上进行,查询过程用32跳专用查询跳频序列,此序列有通用查询的地址决定,相位有本地时钟决定,每隔1.28S变化一次。
B、查询
与寻呼相似,TX用查询跳频序列、RX用查询对应跳频序列。
C、查询对应
从设备响应查询操作。
每一个设备都有自己的时钟,使用查询序列相位同样的几率比較小。
为了避免多个设备在同一查询跳频信道同一时候激活,从设备查询响应规定:从设备收到查询消息,产生0-1023仅仅认为额一个随机数,锁定当时相位输入值进行跳频选择。从设备此后的RAND时隙中返回到连接或者待机状态。
(2)、寻呼扫描
DAC:DeviceAccess Code 设备接入码
寻呼扫描状态下的设备扫描窗体Twindowpage scan内监听自己的DAC。监听仅仅在一个跳频点进行。Twindow page scan足够覆盖16个寻呼扫描频点。
寻呼扫描状态。扫描在同一个频率上进行,持续1.28S,在选择还有一个不同频率。
SR模式 | Tpage scan | 寻呼次数Npage |
R0 | 连续 | >=1 |
R1 | <=1.28S | >=128 |
R2 | <=2.56S | >=256 |
预留 | -- | -- |
(3)、寻呼
主设备使用寻呼发起一个主—从设备连接。通过在不同的跳频点上反复发送从设备DAC来扑捉从设备,从设备在寻呼扫描状态被唤醒,接收寻呼。
(4)、寻呼对应过程
三、链路管理器
如上图红色部分。负责完毕设备:功率管理、链路质量管理、链路控制管理、数据分组管理、链路安全管理。
1、链路管理协议数据单元
蓝牙链路管理器接收到高层的控制信息后,不是向自身的基带部分分发控制信息,就是与还有一台设备的链路管理器进行协商管理。
这些控制信息封装在链路管理协议数据单元LMP_PDU中,由ACL分组的有效载荷携带。
2、链路管理器协议规范
(1)、设备功率管理
RSSI保持模式、呼吸模式、休眠模式。
(2)、链路质量管理 QoSQuality of Service
A、ACL链路。
B、SCO链路。
(3)、链路控制管理
设备寻呼模式、设备角色转换、时钟计时设置、信息交换:版本号信息、支持特性、设备名称。建立连接、链路释放。
(4)、分组管理
版权声明:本文博客原创文章,博客,未经同意,不得转载。