ufldl学习笔记和编程作业:Feature Extraction Using Convolution,Pooling(卷积和汇集特征提取)

ufldl学习笔记与编程作业:Feature Extraction Using Convolution,Pooling(卷积和池化抽取特征)


ufldl出了新教程,感觉比之前的好,从基础讲起。系统清晰。又有编程实践。

在deep learning高质量群里面听一些前辈说。不必深究其它机器学习的算法。能够直接来学dl。

于是近期就開始搞这个了。教程加上matlab编程,就是完美啊。

新教程的地址是:http://ufldl.stanford.edu/tutorial/



学习链接:
http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/
http://ufldl.stanford.edu/tutorial/supervised/Pooling/
http://ufldl.stanford.edu/tutorial/supervised/ExerciseConvolutionAndPooling/


卷积:用了matlab的conv2函数,这里用的有点挫。由于conv2算的是数学意义上的卷积,函数内部会把filter做180翻转。
而其实我们不是想算数学意义上的卷积。仅仅是简单算 “内积”,点对点相乘再求和。所以,我们得先把filter翻转,再传给conv2,就达到我们目的了。
其实。我想。其实。反不反转。并不影响终于的结果的。由于毕竟W是调整出来的。

池化:这里池化的步长,跟poolDim相等,不会交叉。

这里用了conv2来算均值,能够优化性能。

记得。这里不须要激活函数。!!


这次练习较为简单。

只是几个matlab函数还是得简单总结一下:

conv2求卷积
squeeze把仅仅有一个维度的那一维给去掉
rot90做90度旋转
reshape维度变换


执行结果:

这里练习主要是检測写的两个函数是否正确。


以下是主要代码:

cnnConvolve.m
function convolvedFeatures = cnnConvolve(filterDim, numFilters, images, W, b)
%cnnConvolve Returns the convolution of the features given by W and b with
%the given images
%
% Parameters:
%  filterDim - filter (feature) dimension
%  numFilters - number of feature maps 
%  images - large images to convolve with, matrix in the form
%           images(r, c, image number)  % -------------注意维度的位置
%  W, b - W, b for features from the sparse autoencoder
%         W is of shape (filterDim,filterDim,numFilters)
%         b is of shape (numFilters,1)
%
% Returns:
%  convolvedFeatures - matrix of convolved features in the form
%                      convolvedFeatures(imageRow, imageCol, featureNum, imageNum) % ----------注意维度的位置

numImages = size(images, 3);
imageDim = size(images, 1); %行数,即是高度。 这里没算宽度,貌似默认高宽相等。
convDim = imageDim - filterDim + 1; % 卷积后,特征的高度

convolvedFeatures = zeros(convDim, convDim, numFilters, numImages);

% Instructions:
%   Convolve every filter with every image here to produce the 
%   (imageDim - filterDim + 1) x (imageDim - filterDim + 1) x numFeatures x numImages
%   matrix convolvedFeatures, such that 
%   convolvedFeatures(imageRow, imageCol, featureNum, imageNum) is the
%   value of the convolved featureNum feature for the imageNum image over
%   the region (imageRow, imageCol) to (imageRow + filterDim - 1, imageCol + filterDim - 1)
%
% Expected running times: 
%   Convolving with 100 images should take less than 30 seconds 
%   Convolving with 5000 images should take around 2 minutes
%   (So to save time when testing, you should convolve with less images, as
%   described earlier)


for imageNum = 1:numImages
  for filterNum = 1:numFilters

    % convolution of image with feature matrix
    convolvedImage = zeros(convDim, convDim);

    % Obtain the feature (filterDim x filterDim) needed during the convolution

    %%% YOUR CODE HERE %%%
    filter = W(:,:,filterNum);

    % Flip the feature matrix because of the definition of convolution, as explained later
    filter = rot90(squeeze(filter),2); %squeeze是把仅仅有一个维度的那一维给去掉。

这里就是把第三维给去掉,三维变二维。

% Obtain the image im = squeeze(images(:, :, imageNum)); % Convolve "filter" with "im", adding the result to convolvedImage % be sure to do a 'valid' convolution %%% YOUR CODE HERE %%% convolvedImage =conv2(im, filter,"valid");%加上valid參数,以下代码不要了。

%conv2Dim = size(convolvedImage,1); %im_start = (conv2Dim - convDim+2)/2; %im_end = im_start+convDim-1; %convolvedImage = convolvedImage(im_start:im_end,im_start:im_end);%取中间部分 % Add the bias unit % Then, apply the sigmoid function to get the hidden activation %%% YOUR CODE HERE %%% convolvedImage = convolvedImage.+b(filterNum); convolvedImage = sigmoid(convolvedImage); convolvedImage = reshape(convolvedImage,convDim, convDim, 1, 1);%2维变维4维 convolvedFeatures(:, :, filterNum, imageNum) = convolvedImage; end end end





cnnPool.m
function pooledFeatures = cnnPool(poolDim, convolvedFeatures)
%cnnPool Pools the given convolved features
%
% Parameters:
%  poolDim - dimension of pooling region
%  convolvedFeatures - convolved features to pool (as given by cnnConvolve)
%                      convolvedFeatures(imageRow, imageCol, featureNum, imageNum)
%
% Returns:
%  pooledFeatures - matrix of pooled features in the form
%                   pooledFeatures(poolRow, poolCol, featureNum, imageNum)
%     

numImages = size(convolvedFeatures, 4);
numFilters = size(convolvedFeatures, 3);
convolvedDim = size(convolvedFeatures, 1);

pooledFeatures = zeros(convolvedDim / poolDim, ...
        convolvedDim / poolDim, numFilters, numImages);

% Instructions:
%   Now pool the convolved features in regions of poolDim x poolDim,
%   to obtain the 
%   (convolvedDim/poolDim) x (convolvedDim/poolDim) x numFeatures x numImages 
%   matrix pooledFeatures, such that
%   pooledFeatures(poolRow, poolCol, featureNum, imageNum) is the 
%   value of the featureNum feature for the imageNum image pooled over the
%   corresponding (poolRow, poolCol) pooling region. 
%   
%   Use mean pooling here.

%%% YOUR CODE HERE %%%
filter = ones(poolDim);
for imageNum=1:numImages
	for filterNum=1:numFilters
		im = squeeze(squeeze(convolvedFeatures(:, :,filterNum,imageNum)));%貌似squeeze不要也能够
	    pooledImage =conv2(im, filter,"valid");
    	pooledImage = pooledImage(1:poolDim:end,1:poolDim:end);%取中间部分
    	pooledImage = pooledImage./(poolDim*poolDim);

    	%pooledImage = sigmoid(pooledImage); %不须要sigmoid
    	pooledImage = reshape(pooledImage,convolvedDim / poolDim, convolvedDim / poolDim, 1, 1);%2维变维4维
    
    	pooledFeatures(:, :, filterNum, imageNum) = pooledImage;
	end
end

end



本文作者:linger
本文链接:http://blog.csdn.net/lingerlanlan/article/details/38502627










版权声明:本文博客原创文章。博客,未经同意,不得转载。

posted @ 2015-08-14 20:47  hrhguanli  阅读(241)  评论(0编辑  收藏  举报