POJ 2762推断单个联通(支撑点甚至通缩+拓扑排序)
Going from u to v or from v to u?
Description
In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has n rooms, and one-way corridors connecting some rooms. Each time, Wind choose two rooms x and y, and ask one of their little sons go from one to the other. The son can either
go from x to y, or from y to x. Wind promised that her tasks are all possible, but she actually doesn't know how to decide if a task is possible. To make her life easier, Jiajia decided to choose a cave in which every pair of rooms is a possible task. Given
a cave, can you tell Jiajia whether Wind can randomly choose two rooms without worrying about anything?
Input
The first line contains a single integer T, the number of test cases. And followed T cases.
The first line for each case contains two integers n, m(0 < n < 1001,m < 6000), the number of rooms and corridors in the cave. The next m lines each contains two integers u and v, indicating that there is a corridor connecting room u and room v directly. Output
The output should contain T lines. Write 'Yes' if the cave has the property stated above, or 'No' otherwise.
Sample Input 1 3 3 1 2 2 3 3 1 Sample Output Yes Source
POJ Monthly--2006.02.26,zgl & twb
|
[Submit] [Go Back] [Status] [Discuss]
题意:对于随意两个节点u,v。假设能从u到v或者v到u,那么输出Yes,否则输出No。
思路:先强连通缩点,此时一定不含环,看能不能找到一条最长路包括全部的缩点即可(实际上是找推断单链),用拓扑排序就ok,只是假设仅仅有一个强连通分量那么一定是Yes啦,否则topo排序推断 ,代码例如以下:
#include<iostream> #include<algorithm> #include<cstdio> #include<queue> #include<cstring> #include<cmath> using namespace std; typedef long long ll; const int maxn =1e4+10; const ll mod=20140413; vector<int>G1[maxn],G2[maxn],G[maxn]; int sccno[maxn],vis[maxn],scc_cnt;//sccno强连通编号,scc_cnt表示强连通分量的个数 int ind[maxn];//ind表示入度 void init_G(int n)//初始化缩点图 { memset(ind,0,sizeof ind); for(int i=1;i<=n;i++)G[sccno[i]].clear(); for(int i=1;i<=n;i++) { for(int j=0;j<G1[i].size();++j){ int &v =G1[i][j]; if(sccno[i]!=sccno[v]) { G[sccno[i]].push_back(sccno[v]); ind[sccno[v]]++; } } } } bool toposort(int n)//topo排序 { init_G(n); int u,cnt=0; queue<int>q; for(int i=1;i<=n;i++){ if(!ind[sccno[i]]){ if(!q.empty())return false; q.push(sccno[i]); cnt++; } } while(!q.empty()){ u=q.front(); q.pop(); ind[u]=-1; for(int i=0;i<G[u].size();i++) { int &v=G[u][i]; ind[v]--; if(ind[v]==0){ if(!q.empty())return false; q.push(v); cnt++; } } } return cnt==scc_cnt; } vector<int>S; void init(int n) { memset(vis,0,sizeof vis); memset(sccno,0,sizeof sccno); S.clear(); scc_cnt=0; for(int i=1;i<=n;i++) { G1[i].clear(); G2[i].clear(); G[i].clear(); } } void AddEdge(int u,int v) { G1[u].push_back(v); G2[v].push_back(u); } void dfs1(int u) { if(vis[u])return ; vis[u]=1; for(int i=0;i<G1[u].size();i++)dfs1(G1[u][i]); S.push_back(u); } void dfs2(int u) { if(sccno[u]) return ; sccno[u]=scc_cnt; for(int i=0;i<G2[u].size();++i)dfs2(G2[u][i]); } bool is_Semiconnect(int n)///计算强连通分量,初步推断 { for(int i=1;i<=n;i++)dfs1(i); for(int i=S.size();i>=1;i--){ if(!sccno[S[i-1]]){ scc_cnt++; dfs2(S[i-1]); } } return scc_cnt<=1; } int main() { int T,n,m; scanf("%d",&T); while(T--) { scanf("%d%d",&n,&m); int u,v; init(n); while(m--) { scanf("%d%d",&u,&v); AddEdge(u,v); } if(is_Semiconnect(n))puts("Yes"); else{ if(toposort(n))puts("Yes"); else puts("No"); } } return 0; }
版权声明:本文博客原创文章。博客,未经同意,不得转载。