POJ3190 Stall Reservations 【贪婪】
Stall Reservations
Time Limit: 1000MS | Memory Limit: 65536K | |||
Total Submissions: 3106 | Accepted: 1117 | Special Judge |
Description
Oh those picky N (1 <= N <= 50,000) cows! They are so picky that each one will only be milked over some precise time interval A..B (1 <= A <= B <= 1,000,000), which includes both times A and B. Obviously, FJ must create a reservation system to determine which
stall each cow can be assigned for her milking time. Of course, no cow will share such a private moment with other cows.
Help FJ by determining:
Help FJ by determining:
- The minimum number of stalls required in the barn so that each cow can have her private milking period
- An assignment of cows to these stalls over time
Input
Line 1: A single integer, N
Lines 2..N+1: Line i+1 describes cow i's milking interval with two space-separated integers.
Lines 2..N+1: Line i+1 describes cow i's milking interval with two space-separated integers.
Output
Line 1: The minimum number of stalls the barn must have.
Lines 2..N+1: Line i+1 describes the stall to which cow i will be assigned for her milking period.
Lines 2..N+1: Line i+1 describes the stall to which cow i will be assigned for her milking period.
Sample Input
5 1 10 2 4 3 6 5 8 4 7
Sample Output
4 1 2 3 2 4
Hint
Explanation of the sample:
Here's a graphical schedule for this output:
Here's a graphical schedule for this output:
Time 1 2 3 4 5 6 7 8 9 10 Stall 1 c1>>>>>>>>>>>>>>>>>>>>>>>>>>> Stall 2 .. c2>>>>>> c4>>>>>>>>> .. .. Stall 3 .. .. c3>>>>>>>>> .. .. .. .. Stall 4 .. .. .. c5>>>>>>>>> .. .. ..Other outputs using the same number of stalls are possible.
Source
/* ** 用堆维护的贪心题。先依照開始时间排序。再将牛依次放入堆里。放入之前更新堆顶元素。 ** TLE到吐。。。 */ #include <stdio.h> #include <string.h> #include <algorithm> #include <queue> #define maxn 50010 using namespace std; struct Node2 { int num, u, v; friend bool operator<(const Node2& a, const Node2& b) { return a.v > b.v; } } cow[maxn]; int ans[maxn]; bool cmp(const Node2& a, const Node2& b) { return a.u < b.u; } int main() { int N, i, j, sum, u, v, flag; Node2 tmp; while(scanf("%d", &N) == 1) { sum = 0; for(i = 0; i < N; ++i) { scanf("%d%d", &u, &v); cow[i].num = i + 1; cow[i].u = u; cow[i].v = v; ans[i + 1] = 0; } sort(cow, cow + N, cmp); priority_queue<Node2> PQ; PQ.push(cow[0]); ans[cow[0].num] = ++sum; for(i = 1; i < N; ++i) { tmp = PQ.top(); if(cow[i].u > tmp.v) { tmp.v = cow[i].v; ans[cow[i].num] = ans[tmp.num]; PQ.pop(); PQ.push(tmp); } else { ans[cow[i].num] = ++sum; PQ.push(cow[i]); } } printf("%d\n", sum); for(i = 1; i <= N; ++i) printf("%d\n", ans[i]); } return 0; }
超时代码1:
#include <stdio.h> #include <string.h> #include <algorithm> #define maxn 50010 using std::sort; struct Node { int u, v; } E[maxn]; struct Node2 { int num, u, v; } cow[maxn]; int ans[maxn]; bool cmp(const Node2& a, const Node2& b) { return a.u < b.u; } int main() { int N, i, j, sum, u, v; while(scanf("%d", &N) == 1) { sum = 0; for(i = 0; i < N; ++i) { scanf("%d%d", &u, &v); cow[i].num = i + 1; cow[i].u = u; cow[i].v = v; } sort(cow, cow + N, cmp); for(i = 0; i < N; ++i) { E[i].v = 0; for(j = 0; j <= i; ++j) { if(cow[i].u > E[j].v) { if(!E[j].v) ++sum; E[j].v = cow[i].v; E[j].u = cow[i].u; ans[cow[i].num] = j + 1; break; } } } printf("%d\n", sum); for(i = 1; i <= N; ++i) printf("%d\n", ans[i]); } return 0; }
超时代码2:
#include <stdio.h> #include <string.h> #include <algorithm> #define maxn 50010 using std::sort; struct Node { int u, v; } E[maxn]; struct Node2 { int num, u, v; } cow[maxn]; int ans[maxn]; bool cmp(const Node2& a, const Node2& b) { return a.u < b.u; } int main() { int N, i, j, sum, u, v, flag; while(scanf("%d", &N) == 1) { sum = 0; for(i = 0; i < N; ++i) { scanf("%d%d", &u, &v); cow[i].num = i + 1; cow[i].u = u; cow[i].v = v; ans[i + 1] = 0; } sort(cow, cow + N, cmp); for(i = 0; i < N; ++i) { if(ans[cow[i].num]) continue; ans[cow[i].num] = ++sum; flag = cow[i].v; for(j = i + 1; j < N; ++j) if(!ans[cow[j].num] && cow[j].u > flag) { flag = cow[j].v; ans[cow[j].num] = sum; } } printf("%d\n", sum); for(i = 1; i <= N; ++i) printf("%d\n", ans[i]); } return 0; }
版权声明:本文博客原创文章,博客,未经同意,不得转载。